p-Block Elements (N, O, Hologen and Inert Gases)

EXERCISES

ELEMENTARY

Q. 1 (4)

In $N_{2} N \equiv N$ there are one sigma \& two π bonds so N exists in diatomic form which has high bond enthalpy making it inert.
Q. 2 (4)

Q. 3 (1)

Phosphorus is kept in water due to it burt at $30^{\circ} \mathrm{C}$.
Q. 4 (1)

Atmospheric nitrogen is inert and unreactive because of very high bond energy .
Q. 5 (1)

Nitrogen does not form complexes because of the absence of d-orbitals.
Q. 6 (4)
Q. 7 (2) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2} \rightarrow \mathrm{Ba}+3 \mathrm{~N}_{2}$
Q. 8 (2)

$$
\mathrm{FeSO}_{4}+\mathrm{NO} \rightarrow \underset{(\text { Brown })}{\mathrm{FeSO}_{4}} \cdot \mathrm{NO}
$$

Q. 9 (1)
$\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$; white phosphorus gets easily oxidized because it is highly reactive.
Q. 10 (4)
$\mathrm{N}_{2} \mathrm{O}$ is itself non-combustible but supports combustion. $\mathrm{S}+2 \mathrm{~N}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{2}+2 \mathrm{~N}_{2}$
Q. 11 (2)
$\mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}$ are acedic
$\mathrm{As}_{2} \mathrm{O}_{3}$ is amphoteric
$\mathrm{Bi}_{2} \mathrm{O}_{3}$ is Alkaline
Q. 12 (4)
NO_{2} brown coloured gas.
Q. 13 (2)

$$
\begin{aligned}
& \stackrel{*}{P}_{4} \mathrm{O}_{8} \\
& 4 \mathrm{x}+(-2 \times 8)=0 \\
& 4 \mathrm{x}-16=0 \\
& \mathrm{x}=\frac{16}{4}=+4
\end{aligned}
$$

Q. 14 (3)
Q. 15 (4)

In upper atmosphere NO is formed by lightning flash. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}$
Q. 16 (3)

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

Q. 17 (2)
$\mathrm{NH}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{NCl}_{3}+\mathrm{HCl}$
Q. 18 (1)
Q. 19 (1)
NCl_{5} is not known because of absence of d-orbitals in nitrogen.
Q. 20 (4)
NH_{3} when dissolved in water forms
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{NH}_{4} \mathrm{OH}$
Q. 21 (1)

It is least basic because of the high electronegativity of 3 F atoms. The lone pair present on nitrogen atom is not easily available for donation.
Q. 22 (1)
$\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$ order of bond energy
On moving down the group bond energy decreases. Hence, stability decreases.
Q. 23 (4)

Due to absence of d-orbitals in N atom, it cannot accept electrons from $\mathrm{H}_{2} \mathrm{O}$ for hydrolysis of NF_{3}.
Q. 24 (1)
NH_{3} is a strongest base because Lone pair is easily available for donation.
Q. 25 (1)
NCl_{3} is highly reactive and unstable. Hence it is explosive.
Q. 26 (2)
Q. 27 (1)

Paramagnetism because of two unpaired electrons in the antibonding molecular orbitals.
Q. 28 (4)
Q. 29 (4)
Q. $30 \quad$ (3)

$$
2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}_{2} \rightarrow 4 \mathrm{HF}+\mathrm{O}_{2}
$$

2 unpaired electrons
Q. 31 (3)
SO_{2} is soluble in water

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \underset{\text { Sulpurusacid }}{\mathrm{H}_{2} \mathrm{SO}_{3}}
$$

Q. 32 (4)

Ozone O_{3} is an allotropic form of oxygen.
Q. 33 (3)

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

Q. 34 (1)

The minimum and maximum oxidation number of S are -2 and +6 respectively. Since the oxidation number of S in SO_{2} is +4 , therefore it can be either increased or decreased. Therefore SO_{2} behaves both as an oxidising as well as reducing agent.
Q. 35 (4)

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Q. 36 (1) $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2[\mathrm{H}]$ (Nascent hydrogen)

Coloured flower $+2[\mathrm{H}] \rightarrow$ Colourless flower
Q. 37 (1)

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Q. $38 \quad$ (2)
Q. 39 (4)

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3} \rightarrow \underset{\text { (Oleumor Funing } \mathrm{H}_{2} \mathrm{SO}_{4} \text {) }}{\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}}
$$

Q. 40 (1)
Q. $41 \quad$ (1)

$$
2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~S}
$$

Q. 42 (3)

The bond between $\left(\mathrm{H}_{2} \mathrm{Te}\right)$ is weakest hence it gives H^{+} ion easily.
Q. 43 (3)
$\mathrm{V}_{2} \mathrm{O}_{5}$ catalyst are used for the manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by Contact process.
Q. 44 (2)
$\mathrm{O}_{2} \mathrm{~F}_{2}$ is similar to that of $\mathrm{H}_{2} \mathrm{O}_{2}$

Q. $45 \quad$ (2)

Lose of electron.
Q. 46 (4)
Q. 47 (1)
Q. 48 (1)

Q. 49 (4)
Q. $50 \quad$ (4)
Q. 51 (1)
Q. 52 (1)
Q. 53 (4)
Q. $54 \quad$ (4)

Reactivity order
$\mathrm{I}^{-}>\mathrm{Br}^{3-}>\mathrm{Cl}^{-}>\mathrm{BF}^{-}$
Q. 55 (4)

Iodine has the least affinity for water and is only slightly soluble in it. However, it dissolves in 10% aq. solution of KI due to the formation of a complex ion i.e. I_{3}^{-} $\mathrm{I}_{2}+\mathrm{KI} \rightleftharpoons \mathrm{KI}_{3}$ or $\mathrm{I}_{2}+\mathrm{I}^{-} \rightleftharpoons \mathrm{I}_{3}^{-}($complex ion $)$
Q. 56 (1)

HI is the strongest reducing agent among halogen acids because of lowest bond dissociation energy.
Q. 57 (1)

HF is liquid because of intermolecular H -Bonding.
Q. 58 (1)

Q. 59 (1)
Q. 60 (4)

In HF the molecules aggregate because of intermolecular hydrogen bonding. Hence, it has highest boiling point and highest heat of vaporisation.
Q. 61 (4)

HI is strongest acid because $\mathrm{H}-\mathrm{I}$ bond is weakest among halogen acids.
Q. 62 (1)

In HF the molecules aggregate because of intermolecular hydrogen bonding. Hence, it has highest boiling point.
Q. 63 (1)
Q. 64 (1)
$\mathrm{HClO}_{4}>\mathrm{HCl}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{HNO}_{3}$
Decreasing order of acidic character.
Q. 65 (1)
$\mathrm{CaOCl}_{2} \longrightarrow \mathrm{CaCl}_{2}^{+}+\mathrm{OCl}^{-}$

Q. 66 (1)

Pseudohalide ions and Pseudohalogens
There are certain monovalent negative ions made up of two or more electronegative atoms which exhibit properties similar to these of halide ions. Such ions are known as pseudo halide ions just as halide ions, pseudo halide ions have also corresponding dimoric molecules. These are called pseudo halogens and show properties similar to those of halogens.

Pseudohalide	Pseudohalogens
CN^{-}cyanide	$(\mathrm{CN})_{2}$ Cyanogen
SCN^{-}Thiocyanate	$(\mathrm{SCN})_{2}$ Thiocyanogen

Q. 67 (2)

Q. 68 (1)

$$
\begin{array}{lcccc}
\text { Gas - } & \mathrm{H}_{2} & \mathrm{O}_{2} & \mathrm{He} & \mathrm{~N}_{2} \\
\text { Mol mass - } & 2 & 32 & 4 & 28
\end{array}
$$

Q. 69 (3)
Q. 70 (4)

All the noble gases are monoatomic, colourless and odourless gases. Their monoatomic nature is due to the stable outer configuration $\mathrm{ns}^{2} \mathrm{np}^{6}$ of their atoms. As a result, they do not enter into chemical combination even amongst themselves.

Q. 71 (1)

Q. 72 (3)

Neon $\rightarrow \mathrm{Ne}$ is monoatomic and others are diatomic N_{2}, F_{2} and O_{2}.
Q. 73 (2)
$\mathrm{Ne}_{10} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
Q. 74 (2)
Q. 75 (2)

Zero group element are show less chemically activity because this group element have 8 electron.
Q. 76 (4)
Q. 77 (4)
He, Ne, and Kr all are found in very little amount in atmosphere, so all are called rare gas.
Q. 78 (4)
Q. 79 (3)
$\mathrm{XeF}_{2}, \mathrm{XeOF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeOF}_{4}, \mathrm{XeF}_{6}, \mathrm{XeO}_{3}$
Q. 80 (4)
XeF_{2} has $\mathrm{sp}^{3} \mathrm{~d}$-hybridization with linear shape

Q. 81 (4)
Q. 82 (1)
XeO_{3} shows sp^{3} hybridization.
Q. 83 (1)

Zero group element are attached with weak intermolecular force.
Q. $84 \quad$ (2)
$\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$ and XeF_{6} are formd.

Q. 85 (4)

In the formation of $\mathrm{XeF}_{4}, \mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation occurs which gives the molecule an octahedral structure. The xenon and four fluorine atoms are coplanar while the two equatorial positions are occupied by the two lone pairs of electrons.

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (4)

Black phosphorus is thermodynamically most stable form of phosphorus as it is a highly polymerised form of phosphorus. Hence it is least reactive.

Q. 2 (2)

Has one lone pair of electrons on central atom which they can donate to lewis acid.

Q. 3 (1)

The basic strength of the hydrides of group 15 elements down the group decreases because down the group as electronegativity decreases p-orbital take part in the bond and lone pair present in s-orbital :
s-orbital is larger and non directional hence it has less effective tendency of bond formation.
Q. 4 (3)
Q. 5 (4)
$\mathrm{NH}_{4} \mathrm{Cl}$ gives $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ gives $\mathrm{N}_{2} \mathrm{O}$ and AgNO_{3} gives NO_{2}.

$$
\text { (1) } \mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\Delta} \mathrm{NH}_{3}+\mathrm{HCl}
$$

(2) $\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{AgNO}_{3} \xrightarrow{\Delta} \mathrm{Ag}+\mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
(4) $\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Q. 6 (1)
Q. 7 (3)

Q. 8 (4)
$4 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \xrightarrow{250 \mathrm{~K}} 4 \mathrm{HPO}_{3}+\mathrm{N}_{2} \mathrm{O}_{5}$ (anhydride of HNO_{3})
Q. 9 (4)
Q. 10 (4)
Q. 11 (1)
Q. 12 (2)
Q. 13 (1)

Q. 14 (1)
Q. 15 (3)

Q. 16 (2)
Q. 17 (1)
Q. 18 (1)

A moelcular weight of molecule increase it convert to gas \rightarrow liquid \rightarrow solid
Q. 19 (2)

S-S, :Ö=Ö: - more 1.p. repultion in O due to smaller size.
Q. $20 \quad$ (3)
Q. 21 (4)

Q. 22	(4)
	Allotrope of oxygen.
Q. 23	(4)
Q. 24	(3) $\mathrm{SO}_{2} \& \mathrm{Cl}_{2}$ $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HCl}+\mathrm{O}$ Cl_{2} is a powerful bleaching agent bleaching due to oxidation $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HCl}+[\mathrm{O}]$
Q. 25	(2)
	$\text { Acidic properties } \propto \frac{\text { Non metallic character }}{\text { metallic character }}$
Q. 26	(1)
	$\mathrm{SO}_{2}^{+4} \xrightarrow{\text { reduction }} \mathrm{S}^{\circ}$ oxidising agent.
Q. 27	(3)
	$3 \mathrm{O}_{2} \xrightarrow{\text { U.V }} 2 \mathrm{O}_{3}$
Q. 28	(1)
	$2 \mathrm{O}_{3} 3 \mathrm{O}_{2}$
Q. 29	(3)
Q. 30	(3)
Q. 31	(2)
Q. 3	(2)
	Ripole moment $\propto \Delta \mathrm{EN}$ of atom.
Q. 3	(1)
Q. 34	(1)
Q. 35	(4)

Amongst halogens fluorine is the strongest oxidising agent on account of low bond dissociation energy and high enthalpy of hydration.
Q. 36 (2)

Fluorine, being most electronegative element, always show the oxidation state of -1 . Other halogens can show higher positive oxidation state in addition to negative oxidation of -1 .
Q. 37 (2)
$\mathrm{SiO}_{2}+6 \mathrm{HF} \rightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}+2 \mathrm{H}_{2} \mathrm{O}$
Q. 38 (4)

Standard reduction potential (in volts) of the perhalate ions are gives as below -
$\mathrm{ClO}_{4}-+2 \mathrm{H}^{+}+2 \mathrm{e}-\longrightarrow \mathrm{ClO}_{3}-+\mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.19 \mathrm{~V}$
$\mathrm{BrO}_{4}-+2 \mathrm{H}^{+}+2 \mathrm{e}--\mathrm{BrO}_{2}-+\mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.74 \mathrm{~V}$
$\mathrm{IO}_{4}-+2 \mathrm{H}^{+}+2 \mathrm{e}-\longrightarrow \mathrm{IO}_{3}-+\mathrm{H}_{2} \mathrm{O} ; \quad \mathrm{E}^{\circ}=+1.65 \mathrm{~V}$
more the standard reduction potential, the more is tendency of perhalite ion to undergo reduction and more stronger it will be an oxidizing agent.
Q. 39 (3)

It's bleaching action is due to nascent oxygen.

Q. 40 (2)

Pseudohalides contain at least one N atom and their properties are similar to halides.
Q. 41 (1)
e.g. CN^{-}
Q. 42 (1)

NCCN is pseudohalogen but CN^{-}and $\mathrm{N}_{3}{ }^{-}$are pseudohalide but $\mathrm{I}_{3}{ }^{-}$is only polyhalide.
Q. 43 (1)
ICl_{3}, exist as dimer in solid state.

Planar molecule
and
$\mathrm{ICl}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HIO}_{2}$ (iodous acid) +3 HCl (Hydrochloric acid)
Q. 44 (3)

In March 1962, Neil Bartlett, then at the University of British Columbia, observed the reaction of a noble gas. First, he prepared a red compound which is formulated as $\mathrm{O}_{2}^{+}\left[\mathrm{PtF}_{6}\right]-$ and it is already know that the first ionisation enthalpy of molecular oxygen $\left(1175 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is almost similar with that xenon $\left(1170 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Then he made efforts to prepare same type of compound by mixing $\mathrm{Pt}_{\mathrm{F}}^{6}$ and Xenon $\mathrm{Xe}^{+}\left[\mathrm{PtF}_{6}\right]-$. After this discovery, a number of xenon compounds mainly with most electronegative elements like fluorine and oxygen, have been synthesised.
Q. 45 (2)

Noble gases exist as monoatomic molecules.
Q. 46 (1)

All the noble gases except radon occur in the atmosphere. Xenon and radon are the rarest elements of the group. Radon is obtained as a decay product of 226Ra.

$$
{ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}
$$

Q. 47 (1)

Most abundant element in air is Ar. Order of abundance in the air is $\mathrm{Ar}>\mathrm{Ne}>\mathrm{Kr}>\mathrm{He}>\mathrm{Xe}$.
Q. 48 (2)
XeF_{5} does not exist at all.

Q. 49 (2)

Xenon form maximum number of compounds like XeF_{2}, $\mathrm{XeF}_{4}, \mathrm{XeF}_{6}, \mathrm{XeO}_{3}, \mathrm{XeO}_{4}$ etc.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)
Q. 2 (A)
Q. 3 (D)

Allotropes differ in their crystal structures and physical properties but have same chemical properties.
Q. 4 (D)
Q. 5 (D)
$\mathrm{P}_{4} \xrightarrow[\text { low tempt./sunlight }]{250^{\circ} \mathrm{C} \text { or }}$ Red phosphorus.
Q. 6 (B)
Q. 7 (A)

White phosphorus is obtained by heating a mixture of phosphorite mineral, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ with sand and coke in an electric furnace in inert atmosphere.

$$
\begin{array}{r}
2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\text { from bone-ash })+10 \mathrm{C}+6 \mathrm{SiO}_{2} \xrightarrow{\Delta} \\
6 \mathrm{CaSiO}_{3}+10 \mathrm{CO}+\mathrm{P}_{4}(\mathrm{~s})
\end{array}
$$

Q. 8 (C)

In $\mathrm{P}_{4} \mathrm{O}_{6}$ each phosphorus is linked to three oxygen atoms; whereas in $\mathrm{P}_{4} \mathrm{O}_{10}$ each phosphorus atom is linked to four oxygen atoms.
Q. 9 (C)

Q. 10 (C)
Q. 11 (C)
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{673 \mathrm{~K}} 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ NaNO_{3} and KNO_{3} gives their nitrites and O_{2} where as $\mathrm{NH}_{4} \mathrm{NO}_{3}$ gives $\mathrm{N}_{2} \mathrm{O}$.
Q. 12 (B)

$$
\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}
$$

Q. 13 (D)
Q. 14 (A)

The difference of electronegativities between nitrogen (V) and oxygen is least as compared to that of in the other oxides. On moving down the group acidic strength decreses.

Q. 15 (C)

Structure of Hypophosphorus acid. As it contains only one replaceable H atom. it is mono basic.

Q. 16 (C)
Q. 17 (B)
Q. 18 (A)
Q. 19 (A)
Q. 20 (C)
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{KNO}_{2} \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{2}$;
$\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Q. 21 (B)
Q. 22 (A)
Q. 23 (B)

Down the group the X-H bond length increases with increase in size of atom. So bond dissociation energies decrease and thererfore, thermal stability decrease. Hence the correct decreasing order is
$\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$.
Q. 24 (C)

According to the following reaction, one mole of $\mathrm{Ca}_{3} \mathrm{P}_{2}$ gives 2 mole of PH_{3}
$\mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{PH}_{3}$.

$$
\begin{array}{ll}
\text { Q. } 25 & \text { (B) } \\
\text { Q. } 26 & \text { (A) } \\
& \mathrm{Ca}_{3} \mathrm{P}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{PH}_{3} \\
& \mathrm{PH}_{3}+\mathrm{HI}(\mathrm{~g}) \longrightarrow \mathrm{PH}_{4} \mathrm{I}(\mathrm{~g})
\end{array}
$$

Q. 27 (B)

Q. 28 (B)
Q. 29 (C)
Q. 30 (A)
$\mathrm{PF}_{3} \rightarrow$ surronding atms does not have vacantal orbital.
Q. 31 (C)
Q. 32 (D)
$\mathrm{CaC}_{2}+\mathrm{N}_{2} \xrightarrow{\Delta} \mathrm{CaCN}_{2}+\mathrm{C}$ nitrolim
Q. 33 (C)

When sulphur is heated, firstly S_{8} rings break, diradicals are formed, polymerisation takes place. On further $\uparrow \mathrm{T}$ viscosity increase and then viscosity decrease at very high temperature ($\sim 600^{\circ} \mathrm{C}$) rings are formed and in vapour phase S_{2} (paramagnetic) molecules are present.

Q. 34 (C)

Stability (Mono clinic < Rhombic)
Monoclinic and Rhombic sulphur have same puckered ring structure but they differs in crystalline structure.
Q. 35 (B)
$\mathrm{H}_{2} \mathrm{~S}$ acts as strong reducing agent with nitric acid and acidified KMnO_{4}.
$2 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}+\mathrm{S}$.
Q. 36 (B)
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$
Q. 37 (C)
Q. 38 (B)
O.S. of S in $\mathrm{SO}_{3}{ }^{2-}=+4$
O.S. of S in $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}=+3$
O.S. of S in $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}=+5$
(None of these contains peroxide linkage).
The correct order of increasing O.S. is ;
$\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
Q. 39 (A)

Q. 40 (A)

$$
\mathrm{O}_{3}+\mathrm{KI}+\mathrm{D}_{2} \mathrm{O} \longrightarrow \mathrm{KOD}+\mathrm{O}_{2}+\mathrm{I}_{2}
$$

Q. 41 (C)

$\mathrm{SO}_{2} \mathrm{Cl}_{2}$
Q. 42 (B)
Q. 43 (B)
Q. 44 (D)
-1

$2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$ | 0 |
| :---: |
| $\mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |

Thus $\mathrm{H}_{2} \mathrm{SO}_{4}$ oxidises HI^{2} to I_{2}.

| -1 | +6 |
| :---: | :---: | :---: |
| $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$ | 0
 $\mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |

Q. 45 (C)
Q. 46 (B)
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+4 \mathrm{Cl}_{2}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaHSO}_{4}+8 \mathrm{HCl}$
Q. 47 (D)

It is sodium sulphite containing sulphite, $\mathrm{SO}_{3}{ }^{2-}$.
Q. 48 (B)

$$
\mathrm{H}_{2} \mathrm{SO}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} .
$$

Q. 49 (C)
Q. 50 (D)

The structure of Caro's acid is

$+6$.
Q. 51 (B)

Q. 52 (B)

It has d- and f-orbitals so it can show higher positive oxidation states with highly electronegative fluorine and oxygen.
Q. 53 As the size of anion increases the distance between the nucleus and valence shell electrons increases resulting into weak force of attraction between them. This leads to increase in the ease of the donation of electrons in the order $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$. Hence I^{-} acts as a strongest reducing agent.
Q. 54 (A)

SRP $=2.87 \mathrm{~V}$ (highest)
Q. 55 (C)

Chlorine gas reacts with $\mathrm{CaO}, \mathrm{NaOH}$ and NH_{3}; so chlorine gas cannot be dried by passing over these compounds. $\mathrm{H}_{2} \mathrm{SO}_{4}$ have great affinity for water and therefore it is used for drying Cl_{2}.
Q. 56 (C)
$\mathrm{F}_{2}+\underset{(\mathrm{X})}{\mathrm{HCl}} \longrightarrow \mathrm{HF}+\underset{(\mathrm{Y})}{\mathrm{Cl}_{2}}$
Cl_{2} is grenish yellow gas

$$
\underset{(\mathrm{Y})}{2 \mathrm{Cl}_{2}}+3\left(\mathrm{a}(\mathrm{OH})_{2} \longrightarrow\right.
$$

$$
\mathrm{Ca}(\mathrm{OCl})_{2} \cdot \mathrm{Ca}(\mathrm{OH})_{2} \cdot \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

(Z)

Z is bleaching powder it turns red litmus paper to white.
Q. 57 (A)

AgF is soluble in water.
Q. 58 (B)
$2 \mathrm{ClO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HClO}_{3}+\mathrm{HClO}_{4}$
Q. 59 (D)

HI is the strongest acid so I^{-}is the weakest base.
Q. 60 (D)
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HI} \longrightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 61 (D)
$2 \mathrm{ClO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HClO}_{2}+\mathrm{HClO}_{3}$
8
Q. 62 (B)
$\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HCl}+[\mathrm{O}]$.
Bleaching is due to oxidation.
Q. 63 (C)
$\mathrm{I}_{4} \mathrm{O}_{9}$ is actually $\mathrm{I}\left(\mathrm{IO}_{3}\right)_{3}$ which gets ionised. $\mathrm{I}\left(\mathrm{IO}_{3}\right)_{3} \rightleftharpoons \mathrm{I}^{3+}+3\left(\mathrm{IO}_{3}-\right)$
Q. 64 (A)
$\Delta \mathrm{H}_{\text {vaporisation }}$ order : $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
Q. 65 (D)
$\xrightarrow[2.26 \AA]{\mathrm{H}-\mathrm{F}-\mathrm{H}}$
Average. HF bond length $=\frac{2.26}{2}=1.13 \AA ̆$
stretching $=1.13-0.92=0.21 \AA$
Q. 66 (D)
$\mathrm{IO}^{-} \xrightarrow[\text { Hot and conc. }]{\mathrm{OH}^{-}} \mathrm{I}_{\mathrm{P}}^{-}+\mathrm{IO}_{\mathrm{Q}}^{-}$
Q is more stable anion its conjugate acid is HIO_{3}
$\underset{X}{2 \mathrm{HIO}_{3}} \stackrel{240^{\circ} \mathrm{C}}{\rightleftharpoons} \mathrm{I}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{I}_{2} \mathrm{O}_{\mathrm{Y}}+5 \mathrm{CO} \longrightarrow \mathrm{I}_{2}+5 \mathrm{CO}_{2} \longrightarrow$ Useful in fire extinguishing
Q. 67 (B)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ oxidises HBr to Br_{2} $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HBr} \longrightarrow \mathrm{SO}_{2}+\mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
Q. 68 (D)

$$
\begin{align*}
& \mathrm{Cl}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O} \\
& \quad \text { Cold and dil. } \tag{A}\\
& 3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \longrightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
& \quad \text { Hot and conc. } \tag{B}
\end{align*}
$$

Q. 69 (B)

If Helium is compressed and liquified it forms $\mathrm{He}(\mathrm{I})$ liquid at 4.2 K . This liquid is a normal liquid like any other liquid. But if it is further cooled then He (II) is obtained at 2.2 K , which is known as super fluid, because it is a liquid with properties of gases. It climbs through the walls of the container \& comes out. It has very high thermal conductivity and very low viscosity.
Q. 70 (A)

It is factual.
Q. 71 (D)

Very weak, Vander Waals forces.
Q. 72 (A)

As size increases, Vander Waals forces also increases.
Q. 73 (B)
(I) They do not form compounds readily as they are chemically inert on account of stable electron configuration.
(II), (III) \& (IV) are correct statement.
Q. 74 (C)

Coconut charcoal possess characteristic property for adsorbing different noble gases at different temperatures.
Q. 75 (D)

Both Xe and O_{2} have comparable ionisation energies.
$\mathrm{Xe} \longrightarrow \mathrm{Xe}^{+}+\mathrm{e}^{-}$ionisation energy $=1,170 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}^{+}+\mathrm{e}^{-}$ionisation energy $=1,175 \mathrm{~kJ} / \mathrm{mol}$
Q. 76 (D)

Inert gas can not be electrolysed, due to complete octate, they don't gain electron or release electrons.
Q. 77 (A)
$6 \mathrm{XeF}_{4}+12 \mathrm{H}_{2} \mathrm{O} 4 \mathrm{Xe}+2 \mathrm{XeO}_{3}+24 \mathrm{HF}+3 \mathrm{O}_{2}$
$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{OCaCO}_{3}+2 \mathrm{NH}_{3}$.
Q. 78 (C)
$\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}$
Q. 79 (A)
$2\left[\mathrm{HXeO}_{4}\right]^{-}+2 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{XeO}_{6}\right]^{4}+\mathrm{Xe}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Q. $80 \quad$ (C)
$\because \ddot{\mathrm{X}} \mathrm{e}-\mathrm{F}, \sigma=1,1 . \mathrm{p} 3,4,$. sp$^{3} \mathrm{~d}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (AB)

Down the group the size of atoms increases and so electronegativity decreases; but electropositive character increases on account of increase in size of atoms. Hence they form positive ions i.e. cation not M^{3-}.
Q. 2 (AB)

Apart from NH_{3} other hydrides also form stable complexes.
Q. 3
(AB)
$2 \mathrm{NaNO}_{2} \xrightarrow{800^{\circ} \mathrm{C}} \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2}+\frac{3}{2} \mathrm{O}_{2}$
$\mathrm{NaNO}_{2}+\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NaCl}+\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Q. 4 (ACD)

Red phosphorus is inert towards sodium hydroxide but white phosphorus reacts according to following reaction.
$\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$
Q. 5 (ABC)
(A) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\text { Pt/ } \mathrm{Rh}} \mathrm{Fa50}^{\circ} \mathrm{C} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;principal reaction of Ostwald's method of HNO_{3} manufacturing. (B) HNO_{2} is weak oxidising agent and oxidises Fe^{2+} to Fe^{3+} and I^{-}to I_{2} and it self reduced to $\mathrm{N}_{2} \mathrm{O}$ or NO. In contrary HNO_{2} is oxidised by KMnO_{4} and Cl_{2} forming NO_{3}^{-}.
(C) $2 \mathrm{NO}_{2}+\mathrm{O}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$
Q. 6 (ACD)
(A) $\mathrm{Sb}+5 \mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{SbO}_{4}+5 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{Mn}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
(C) $3 \mathrm{HNO}_{2} \longrightarrow \mathrm{HNO}_{3}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(D) $4 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \xrightarrow{250 \mathrm{~K}} 2 \mathrm{~N}_{2} \mathrm{O}_{5}+4 \mathrm{HPO}_{3}$
Q. 7 (BCD)
$\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{N}_{2} \mathrm{O}$ is a colourless neutral gas. It produces laughter so it is called as laughing gas.
Note : Picrin $\left(\mathrm{CCl}_{3} \mathrm{NO}_{2}\right)$ is tear gas.
Q. 8 (AD)
$\mathrm{A} \Rightarrow \mathrm{P}_{4} \mathrm{O}_{6}$;
$\mathrm{B} \Rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$;
$\mathrm{C} \Rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$;
$\mathrm{D} \Rightarrow \mathrm{PH}_{3}$
Q. 9 (ABCD)
(A) $\mathrm{PCl}_{5}+6 \mathrm{LiF} \longrightarrow \mathrm{LiPF}_{6}+5 \mathrm{LiCl}$
(B) $6 \mathrm{PCl}_{5}+\mathrm{P}_{4} \mathrm{O}_{10} \longrightarrow 10 \mathrm{POCl}_{3}$
(C) $\mathrm{PCl}_{3}+\mathrm{NaH} \longrightarrow \mathrm{PH}_{3}$
(D) $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{POCl}_{3}+2 \mathrm{HCl}$
(equimolar amount)

Q. 10 (ABCD)

Fact.
Q. 11 (ABCD)

Factual

Q. 12 (BD)

All acts as reducing agent and the increasing order of reducing character is $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{BiH}_{3}$ on account of decreasing $\mathrm{M}-\mathrm{H}$ bond dissociation energies with increasing size of central atoms.
NH_{3} is only a mild reducing agent.
Q. 13 (ACD)
(A) $\mathrm{NaNO}_{2}+\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NaCl}+\mathrm{NH}_{4} \mathrm{NO}_{2}$

$$
\mathrm{NH}_{4} \mathrm{NO}_{2} \xrightarrow{\Delta} \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

(B) $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+[\mathrm{O}] ; \mathrm{NaNO}_{2}+[\mathrm{O}]$
$\longrightarrow \mathrm{NaNO}_{3}$
(C) $2 \mathrm{NH}_{3}+3 \mathrm{CuO} \longrightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(D) $2 \mathrm{KMn}^{+7} \mathrm{O}_{4}^{-}+2 \mathrm{NH}_{3} \longrightarrow 2 \mathrm{KOH}+2 \mathrm{MnO}_{2}+\mathrm{N}_{2}+$ $2 \mathrm{H}_{2} \mathrm{O}$
Q. 14 (ABCD)
$\mathrm{Ca}_{3} \mathrm{~N}_{2}, \mathrm{Ca}_{3} \mathrm{P}_{2}, \mathrm{Na}_{3} \mathrm{As}_{2}, \mathrm{Mg}_{3} \mathrm{Bi}_{2}$
Q. 15 (ABC)
$\mathrm{AgNO}_{3} \xrightarrow{\Delta} \mathrm{Ag}+\mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2} ;$
$2 \mathrm{BaO}_{2} \xrightarrow{800^{\circ} \mathrm{C}} 2 \mathrm{BaO}+\mathrm{O}_{2}$.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{PbO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$;
$\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$

Q. 16 (BCD)

Cu, Ag and Zn ions dissolve in excess of aq. NH_{3} to form complex.
Q. 17 (BCD)
(A) In PH_{3} the lone pair of electrons is present in spherical non directional more concentrated s-orbital where as lone pair of electrons is present in directional sp^{3} hybrid orbital. As a result, the ease of donation of lone pair of electron is more in NH_{3} as compare to PH_{3}.
(B) It is incorrect statement.
(C) $3 \mathrm{CuSO}_{4}+2 \mathrm{PH}_{3} \longrightarrow \mathrm{Cu}_{3} \mathrm{P}_{2}$ (black ppt) $+\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) $\mathrm{PH}_{3}+\mathrm{O}_{2} \longrightarrow$ Dense white fumes of $\mathrm{P}_{4} \mathrm{O}_{10} \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$ is negligibly formed.
Q. 18 (ABCD)
Q. 19 (ABCD)

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \leftrightharpoons \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Q. 20 (ABD)

$$
3 \mathrm{X}_{2}+8 \mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{X}
$$

$$
(\mathrm{X}: \mathrm{F}, \mathrm{Cl}, \mathrm{Br})
$$

Q. 21 (C)
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2} \longrightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}$
Q. 22 (B)
(A) $\mathrm{N}_{2} \mathrm{O}_{3}+2 \mathrm{KOH} \longrightarrow 2 \mathrm{KNO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2} \longrightarrow \mathrm{HNO}_{2}$ (reducing agent) $+\mathrm{HNO}_{3}$ (oxidising agent)
(C) Neutral to litmus as neutral oxide
(D) In the liquid state, $\mathrm{N}_{2} \mathrm{O}_{4}$ tends to ionise

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{NO}^{+}+\mathrm{NO}_{3}^{-}
$$

Q. 23 (C)
$\mathrm{A}=\mathrm{PH}_{4} \mathrm{I} ; \mathrm{B}=\mathrm{PH}_{3} ; \mathrm{C}=\mathrm{HI} ; \mathrm{D}=\mathrm{PI}_{3}$
Q. 24 (B)
Q. 25 (B)
(A) is $\mathrm{PH}_{4} \mathrm{I}$. The given changes are :
(i) $\mathrm{PH}_{4} \mathrm{I}(\mathrm{A}) \xrightarrow{\Delta} \mathrm{HI}(\mathrm{C})+\mathrm{PH}_{3}$ (B)
(ii) $\mathrm{PH}_{4} \mathrm{I}(\mathrm{A})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}(\mathrm{~B}) \uparrow+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{I}^{-}$
(iii) $\mathrm{PH}_{3}(\mathrm{~B})+\mathrm{I}_{2} \longrightarrow \mathrm{PI}_{3}(\mathrm{D})+\mathrm{HI}$
(iv) $\mathrm{PI}_{3}(\mathrm{D})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{HI}$
(v) $\mathrm{HI}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgI} \downarrow+\mathrm{HNO}_{3}$
(vi) $4 \mathrm{PH}_{3}(\mathrm{~B})+8 \mathrm{O}_{2} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}$ (C) (dense white fumes) $+6 \mathrm{H}_{2} \mathrm{O}$
Q. 26 (P) - 3 ; (Q) - 4 ; (R) - 2 ; (S) - 1
Q. 27 (A) p, q, s; (B) p, q, r, s; (C) q, r, s; (D) p, q, r, s
(A) $\mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Hydrolysis }} \mathrm{POCl}_{3}+2 \mathrm{HCl}$
sp^{3}

(B) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{CO}_{2}]{\Delta}$

(C) Disproportionation reaction
 (Alkaline hydrolysis)
(D) $\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}$ (Hot) $\xrightarrow[\text { Hydrolysis }]{\Delta} \xrightarrow{\Delta} \mathrm{\Delta} \mathrm{\Delta i} ? \mathrm{kV} u$
$3 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$
$\mathrm{P}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{3}$
$4 \mathrm{H}_{3} \mathrm{PO}_{3} \xrightarrow{\Delta} 3 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$
Q. 28 (A) - q, s; (B)-q, r; (C) - q, s; (D) - q
(A) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

One $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bond and four $\mathrm{P}-\mathrm{OH}$ bonds
(B) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$

Two $\mathrm{P}-\mathrm{H}$ bond and one $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bond
(C) $\left(\mathrm{HPO}_{3}\right)_{3}$ (cyclic)

Q. 29 (A) - p,q ; (B) - p,r ; (C) - q, s ; (D) - p,q,r,s
$2 \mathrm{NH}_{3}+3 \mathrm{~F}_{2} \longrightarrow \mathrm{~N}_{2}+6 \mathrm{HF}$
$8 \mathrm{NH}_{3}$ (excess.) $+3 \mathrm{Cl}_{2} \longrightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{Cl}$
$\mathrm{NH}_{3}+3 \mathrm{Br}_{2}$ (excess.) $\longrightarrow \mathrm{NBr}_{3}+3 \mathrm{HBr}$
NH_{3} (aq.) $+\mathrm{I}_{2} \longrightarrow \mathrm{NI}_{3} . \mathrm{NH}_{3}+3 \mathrm{HI}$
$8 \mathrm{NI}_{3} . \mathrm{NH}_{3} \longrightarrow 5 \mathrm{~N}_{2}+9 \mathrm{I}_{2}+6 \mathrm{NH}_{4} \mathrm{I}$
Q. 30 (AC)
$\mathrm{FeS}+$ dil. HCl or $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{~S}$

Q. 31 (ABCD)

Factual
Q. 32 (BCD)
(B) Group 16 elements form oxides of type EO_{2} and EO_{3}.
(D) SO_{2} works both as oxidising and reducing agent.
Q. 33 (ABCD)
SO_{2} acts as reducing agent only in presence of strong oxidising agent.
Q. 34 (CD)
$\mathrm{SO}_{2}+\mathrm{PCl}_{5} \longrightarrow \mathrm{SOCl}_{2}+\mathrm{POCl}_{3}$
No change in oxidation number of any element. So, not a redox reaction.
SOCl_{2} is thionylchloride; $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is sulphuryl chloride.

Both the products have sp^{3} hybridisation of central atom.
$\mathrm{SO}_{2}+\mathrm{PCl}_{5} \longrightarrow \mathrm{SOCl}_{2}+\mathrm{POCl}_{3}$
Q. 35 (ABCD)
(A) In alkaline solution, its reducing character is more than in acidic medium.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\
& 2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}
\end{aligned}
$$

(B) Correct statements.
(C) Due to H - bonding it forms a hydrate $\mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (melting point 221 K).
(D) $\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$

$$
\mathrm{KMnO}_{4}+2 \mathrm{KOH}+\mathrm{O}_{2}
$$

Q. 36 (ABCD)
(D)

2-ethyl anthraquinol

Q. 37 (ACD)

All allotropes of sulphur which are less stable gradually changes to most stable allotropic form.
\Rightarrow Monoclinic sulphur is soluble in CS_{2} but insoluble in water.
Q. 38 (ABD)
(A) $2 \mathrm{KMnO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(B) He is insoluble in blood at higher pressure.
(C) O_{2} has two unpaired electrons in antibonding π molecular orbitals.
Q. 39 (ABCD)

Factual

Q. 40 (ABD)

Sulphuric acid has very high affinity towards water and that is why it is used as dehydrating agent. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}+$ concentrated HNO_{3} acts as a sulphonating agent for the sulphonation of various aromatic compounds.
It acts as oxidising agent and oxidises HBr to Br_{2} and HI to I_{2}.

Q. 41 (D)

Q. 42 (AB)
$\mathrm{SCl}_{2} \xrightarrow{\mathrm{NaH}} \mathrm{H}_{2} \mathrm{~S} \uparrow \xrightarrow{\mathrm{CuSO}_{4}} \mathrm{CuS} \downarrow$ black precipitate
Q. 43 (ABCD)
(A) It removes the chlorine from the surface of fibres (while dyeing) according to following reaction.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+4 \mathrm{Cl}_{2}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaHSO}_{4}+8 \mathrm{HCl}
$$

Therefore, it is known as antichlor.
(B) $\mathrm{I}_{3}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow 3 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$

This reaction finds application in the iodometric and iodimetric methods of titrimetric analysis.
(C) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{S} \downarrow$ (white) $+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (disproportionation reaction).
(D) $2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{Ag}^{+} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ (soluble complex) or $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]^{5-}$
This reaction is utilized in photography where hypo is used as fixer.
Q. 44 (ABCD)

All the above are example of reducing nature of $\mathrm{H}_{2} \mathrm{~S}$.

Q. 45 (C)

(A) It is true because of effective $\mathrm{p} \pi-\mathrm{d} \pi$ overlapping owing to small size of sulphur as compared to phosphorus and silicon.
$(+\mathrm{V}) \mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \|(+\mathrm{III})$
(B) $\mathrm{HO}-\underset{\mathrm{O}}{\mathrm{S}}-\mathrm{S}-\mathrm{OH}$ They have +V and + III oxidation
state.
(C) HNO_{3} oxidises sulphur to $\mathrm{H}_{2} \mathrm{SO}_{4}(+\mathrm{VI})$ but only oxidises selenium to $\mathrm{H}_{2} \mathrm{SeO}_{3}(+\mathrm{IV})$. The higher oxidation states become less stable on descending the group.
(D) In M-O electronegativity difference is large while in $\mathrm{X}-\mathrm{O}$, it is comparatively smaller (<1.4).

$$
\mathrm{M}=\text { metal and } \mathrm{X}=\text { non-metal }
$$

Q. 46 (A)

(A) As bond $(\mathrm{H}-\mathrm{E})$ dissociation enthalpy decreases down the group, the acidic character increases from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$.
(B) Order of thermal stability is $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>$ $\mathrm{H}_{2} \mathrm{Te}$.
(C) $\mathrm{H}_{2} \mathrm{O}$ does not have reducing property and this character increases from $\mathrm{H}_{2} \mathrm{~S}$ to $\mathrm{H}_{2} \mathrm{Te}$.
(D) Water has highest boiling point because of H bonding and thus the correct order is $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<$ $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{O}$.
Q. 47 (P) 2 ; (Q) 3, (R) 1, (S) 4
Q. 48 (AB)
Q. 49 (BC)
$\mathrm{NaBr} / \mathrm{NaI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Br}_{2} / \mathrm{I}_{2}+\mathrm{SO}_{2}+\mathrm{NaHSO}_{4}$
$+\mathrm{H}_{2} \mathrm{O}$
Q. 50 (BD)

Smaller halogen (i.e., stronger oxidising agent) displaces bigger halogen (i.e. weaker oxidising agent) from solution of its halide. e.g., $\mathrm{Br}^{-}+\mathrm{Cl}_{2} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$.
Q. 51 (AC)
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
Q. 52 (ABCD)

All the given reactions are correct and all are preparation methods of halogens.
Q. 53 (BC)
Q. 54 (ACD)
all statement are correct.
Q. 55 (ACD)

X is HCl .
HCl has lowest boiling point used is the most volatile.

$$
\mathrm{X}+\mathrm{NaHCO}_{3} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \mid \mathrm{CO}_{2} \uparrow
$$

Q. 56 (ABC)

In I_{2} opposite reaction of F_{2} occurs
$\mathrm{HI}+\mathrm{O}_{2} \longrightarrow \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 57 (ABC)
(A) As O.N. increases, acidic strength increases.
(B) As non-metalic character increases, acid strength increases
(C)

Oxyacid	No. of $p \pi-p \pi$ bond
HClO_{4}	3
HClO_{3}	2
HClO_{2}	1
HClO	0

(D) All are sp^{3} hybridised, therefore same percentage s -character:
Q. 58 (ABD)
FCl_{3} is not possible due to unavailability of d-orbitals in fluorine.
Q. 59 (ABCD)
(A) Thermal stability of AB type compounds increases with increase in electronegativity difference between A and B.
So order is IF > BrF > CIF, true
(B) True
$\mathrm{IF}_{7}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 7 \mathrm{HF}+\mathrm{H}_{5} \mathrm{IO}_{6}$
(C) True, All the electrons, bonding or non-bonding, are present in pairs. Hence interhalogen molecules are dianagnetic in nature.
(D) True

Pentagonal bipyramidal.

Q. 60 (A)

HF has high bond dissociation energy ; so removal of H becomes difficult.

Q. 61 (B)

It is not polar and carbon does not have empty d-orbital. There is also least difference in electronegativity.
Q. 62 (A)

Because its conjugate acid, $\mathrm{H}_{2} \mathrm{O}$ is weakest acid.
Q. 63 (D)
(A) $\mathrm{Br}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-} ; \mathrm{SRP}=+1.09 \mathrm{~V}$
(B) Being covalent in nature sparingly soluble in water.
(C) Fluorescein $+\mathrm{Br}_{2} \longrightarrow$ tetrabromo fluorescein(I) (red)
Q. 64 (D)
(A) $\mathrm{AgNO}_{3}+\mathrm{NaBr} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{AgBr} \downarrow$ (pale yellow)
(B) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NaBr} \longrightarrow \mathrm{PbBr}_{2} \downarrow$ (white) $+\mathrm{NaNO}_{3}$
(C) $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+\mathrm{SO}_{4}^{2-}+2 \mathrm{Na}^{+}$ $+2 \mathrm{H}_{2} \mathrm{O}$

Q. 65 (C)

(A) $3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$
(A) (B)
(C)
(B)

$3 \mathrm{Br}_{2}+3 \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow 5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{CO}_{2}$
$5 \mathrm{NaBr}+\mathrm{NaBrO}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 5 \mathrm{HBr}+\mathrm{HBrO}_{3}+$ $3 \mathrm{Na}_{2} \mathrm{SO}_{4}$
$5 \mathrm{HBr}+\mathrm{HBrO}_{3} \longrightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Q. 66 (D)

F is more electronegative than Cl .
Q. 67 (A) IF_{7}
Q. 68 (C)

$$
\stackrel{\ddot{C} \cdot \stackrel{I}{\mid} F_{3}, \text { l.p. }=2}{ }
$$

Q. 69 (B)
it is $1,3,5,7$
Q. 70 (C)
Q. 71 (A)
Q. 72 (C)
Q. 73 (A)
Q. 74 (A) - q, s; (B) - s ; (C) - p ; (D) - r
(A) $\mathrm{Cl}_{2} \mathrm{O}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HClO}_{3}+\mathrm{HClO}_{4}$
(B) NaClO_{4} (s) +HCl (conc.) $\rightarrow \mathrm{HClO}_{4}+\mathrm{NaCl}$
(C) $2 \mathrm{KClO}_{3}+2(\mathrm{COOH})_{2} \rightarrow \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}+$ $2 \mathrm{ClO}_{2}$
(D) $2 \mathrm{HgO}+2 \mathrm{Cl}_{2} \xrightarrow{573 \mathrm{~K}} \mathrm{HgO} \cdot \mathrm{HgCl}_{2}+\mathrm{Cl}_{2} \mathrm{O}$
Q. 75 (BC)

Xe and Kr being bigger in size trapped in the cavities formed by the water molecules while He and Ne being smaller escape from the cavities.
Q. 76 (AB)

$$
\mathrm{A} \rightarrow \mathrm{XeF}_{2}
$$

$\mu=0$
planner
Xe-F
Bond length $2.00 \AA$
$\mathrm{B} \rightarrow \mathrm{XeF}_{6}$
$\mathrm{C} \rightarrow \mathrm{XeF}_{4}$

$\mu=0$
non-planner
$1.89 \AA$
Q. 77 (ABCD)
(A) $\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}$
(B) $2 \mathrm{XeF}_{6}+\mathrm{SiO}_{2} \longrightarrow 2 \mathrm{XeOF}_{4}+\mathrm{SiF}_{4}$
(C) $\mathrm{XeF}_{4}+\mathrm{O}_{2} \mathrm{~F}_{2} \longrightarrow \mathrm{XeF}_{6}+\mathrm{O}_{2}$
(D) $\mathrm{XeO}_{3}+2 \mathrm{XeF}_{6} \longrightarrow 3 \mathrm{XeOF}_{4}$
Q. 78 (B)
Q. 79 (D)
Q. 80 (C)
Q. 81 (A) - p,q,r,s ; (B) - p,q,r,s,t; (C) - p,q,r,s ; (D) - $\mathrm{q}, \mathrm{s}, \mathrm{t}$
(A) $\mathrm{XeF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Hydrolysis }} 2 \mathrm{Xe}+4 \mathrm{HF}+\mathrm{O}_{2}$
$\mathrm{XeF}_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{Xe}+2 \mathrm{HF}+\mathrm{Cl}_{2}$
as oxidising agent
$\mathrm{XeF}_{2}+\mathrm{PF}_{5} \xrightarrow{\text { Addition reaction }}\left[\mathrm{XeF}^{+}\left[\mathrm{PF}_{6}\right]\right.$

(B) $6 \mathrm{XeF}_{4}+12 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Disproportionation }]{\text { Hydrolysis }} 4 \mathrm{Xe}+2 \mathrm{XeO}_{3}$ $+24 \mathrm{HF}+3 \mathrm{O}_{2}$
$\mathrm{XeF}_{4}+2 \mathrm{Hg} \longrightarrow \mathrm{Xe}+2 \mathrm{HgF}_{2}$ as oxidising agent.
$\mathrm{XeF}_{4}+\mathrm{SbF}_{5} \xrightarrow{\text { Addition reaction }}\left[\mathrm{XeF}_{3}\right]+\left[\mathrm{SbF}_{6}\right]$

(C) $\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Hydrolysis }} \mathrm{XeO}_{3}+2 \mathrm{HF}$
$\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \longrightarrow 6 \mathrm{HF}+\mathrm{Xe}$ as oxidising agent
$\mathrm{CsF}+\mathrm{XeF}_{6} \xrightarrow{\text { Addition reaction }} \mathrm{CsXeF}_{7}$
$\mathrm{XeF}_{6}+\mathrm{PtF}_{6} \xrightarrow{\text { Addition reaction }}\left[\mathrm{XeF}_{5}\right]^{+}\left[\mathrm{PtF}_{6}\right]^{-}$

(D) $\mathrm{XeO}_{3}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{HXeO}_{4}^{-}$
$2 \mathrm{HXeO}_{4}^{-}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{XeO}_{6}^{4-}+\mathrm{Xe}+\mathrm{O}_{2}+$ $2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{XeO}_{3}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{Xe}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{E}=2.10$ V) acts as oxidising agent.

NUMERICAL VALUE BASED

Q. 1 [5]

$(1,2,3,5,6)$ are correct.

Q. 2 [3]

a, d and f are correct.

Q. 3 [4]

Statement (b), (d), (e), (f) are correct and remaining are false.
Q. 4 [3]

$$
\begin{aligned}
& \mathrm{a}=1 ; \quad \mathrm{b}=2 ; \quad \mathrm{c}=1 ; \quad \mathrm{d}=4 \\
& 2 \mathrm{a}+\mathrm{b}+3 \mathrm{c}-\mathrm{d}=2 \times 1+2+3 \times 1-4=3
\end{aligned}
$$

Q. 5 [7]

Yellow coloured crystalline element is sulphur.

$$
\mathrm{S}_{8}+24 \mathrm{~F}_{2} \longrightarrow 8 \mathrm{SF}_{6}
$$

(x)
SF_{6} is octahedral geometry \& thermally stable.
Q. 6 [8]
$\mathrm{SF}_{4}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SO}_{2}+4 \mathrm{HF}$
$2 \mathrm{SF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{S}+\mathrm{SO}_{2}+4 \mathrm{HF}$
$\mathrm{SF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ no reaction
Q. 7 [5]
$4 \mathrm{BF}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{B}(\mathrm{OH})_{3}+3 \mathrm{HBF}_{4}$
$\mathrm{BCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{B}(\mathrm{OH})_{3}+3 \mathrm{HCl}$
$\mathrm{NCl}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+3 \mathrm{HOCl}$
$\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$
$\mathrm{AsCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{HCl}$
Q. 8 [9]

Favourite NCERT reactions except 3 and 4.
Q. 9 [6]
$\mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{AsH}_{3}, \mathrm{SbH}_{3}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}$
Follow drago's rule.
Q. 10 [4]

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}+\mathrm{NaOCl} \longrightarrow \mathrm{NH}_{2} \mathrm{Cl}+\mathrm{NaOH} \\
& \text { (fast) } \\
& 2 \mathrm{NH}_{3}+\mathrm{NH}_{2} \mathrm{Cl} \longrightarrow \mathbf{N H}_{2}-\mathbf{N H}_{2} \text { (strong nucleophile) } \\
& +\mathrm{NH}_{4} \mathrm{Cl} \text { (slow) }
\end{aligned}
$$

Q. 11 [7]
$\mathrm{a}, \mathrm{b}, \mathrm{j}$ are only neutral, all others acidic.
Q. 12 [5]
$\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{h}, \mathrm{i}$ are gases.
Q. 13 [10]

Experimental P-O-P bond angle in $\mathrm{P}_{4} \mathrm{O}_{10}$ is 127°.
Q. 14 [12]
(a) $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{HNO}_{3}$ $\mathrm{x}=6$
(b) $\left(\mathrm{HPO}_{3}\right)_{3}, \mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ $y=6$

Q. 15 [3]

a, d, f have +3 oxidation state.
Q. 16 [6]

Except HCl , it will react with all other compounds, replacing OH -group by Cl -group.
Q. 17 [6]
$\mathrm{Pb}, \mathrm{Sn}, \mathrm{Mg}, \mathrm{MgO}, \mathrm{Hg}, \mathrm{Ag}$ dissolve in cold conc. HNO_{3}. $\mathrm{Pb}_{3} \mathrm{O}_{4}$ (dissolves partially, PbO_{2} remains undissolved), Fe (passivated), Au (insufficient oxidising power of HNO_{3}), Pt (insufficient oxidising power of HNO_{3}).
Q. 18 [6]
$\mathrm{Pb}, \mathrm{Cu}, \mathrm{SrCO}_{3}$ (fail to dissolve). Remaining can dissolve $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{MgO}, \mathrm{CoCO}_{3}, \mathrm{CuCO}_{3}$.
Q. 19 [3]
(iii, viii, ix)
Q. 20 [10]
$\mathrm{P}_{4}+10 \mathrm{SO}_{2} \mathrm{Cl}_{2} \longrightarrow 4 \mathrm{PCl}_{5}+10 \mathrm{SO}_{2}$
Q. 21 [24]
$\mathrm{SOCl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HCl}+\mathrm{SO}_{2}$
Total 4 moles required (2 for $\mathrm{HCl} \& 2$ for SO_{2})
$\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}$
Total 4 moles required (2 for $\mathrm{HCl} \& 2$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$)
$\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}$
Total 5 moles required (3 for $\mathrm{HCl} \& 2$ for $\mathrm{H}_{3} \mathrm{PO}_{3}$)
$\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+5 \mathrm{HCl}$
Total 8 moles required (5 for $\mathrm{HCl} \& 3$ for $\mathrm{H}_{3} \mathrm{PO}_{4}$)
$\mathrm{NCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{3}+3 \mathrm{HOCl}$
Total 3 moles required for HOCl
Q. 22 [10]
(i) Produces SO_{2} and HF
(ii) Produces $\mathrm{H}_{3} \mathrm{PO}_{3}$ and HCl
(iii) Neutral gas
(iv) Produces HNO_{3} and HCl
(v) No hydrolysis
(vi) Produces $\mathrm{H}_{2} \mathrm{SeO}_{4}+\mathrm{HF}$
(vii) Produces $\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{HCl}$
(viii) Produces $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{HCl}$
(ix) Produces $\mathrm{H}_{2} \mathrm{SO}_{3}$
(x) Produces $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl
(xi) Produces $\mathrm{H}_{2} \mathrm{SO}_{3}$ and HCl
(xii) Produces $\mathrm{H}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)$ and HCl
(xiii) No hydrolysis
Q. 23 [3]
$\mathrm{Cl}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCl}+\mathrm{S}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
Q. 24 [5]

In $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \rightarrow 2 \mathrm{~S}$ atoms in +5 oxidation state \& 2 S atoms in 0 oxidation state.
Q. 25 [4]

Q. 26 [9]
$3 \mathrm{~S}+6 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~A})+2 \mathrm{Na}_{2} \mathrm{~S}(\mathrm{~B})+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{~S}+\mathrm{CdCl}_{2} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CdS}(\mathrm{C})$
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{E})+2 \mathrm{NaI}(\mathrm{D})$
$2 \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{E})+4 \mathrm{HCl} \longrightarrow 4 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{2}(\mathrm{~F})+3 \mathrm{~S}$
$2+1+1+0+4+1=9$
Q. 27 [32]
O_{2}
Q. 28 [43]
$\mathrm{P}=\mathrm{Cl}_{2}$
$\mathrm{Q}=\mathrm{N}_{2}$
$71-28=43$
Q. 29 [6]
Q. 30 [2]

Aquaregia :

Q. 31 [5]

HCl will be obtained is $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$.
Q. 32 [3]
$\mathrm{ClO}_{2} ; \mathrm{Cl}_{2} \mathrm{O}_{6}$ and NO_{2} are mixed anhydride.
Q. 33 [13]

(A)
(B) (C)
Q. 34 [2]

Cl is excited state $\uparrow \downarrow$

Q. 35 [32]

Electonic configuration of

${ }_{85} \mathrm{At}=$| 2 | 8 | 18 | 32 | 18 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| K | L | M | N | O | P |

Q. 36 [4]

Boiling point, Atomic volume, Density at STP, critical temp.
Q. 37 [7]
XeF_{2} is a strong oxidising agent with $\mathrm{SRP}=+2.64$.
$\mathrm{XeF}_{2}+\mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+\mathrm{Xe}$
$\mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}$
$\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}$
$\mathrm{XeF}_{2}+\mathrm{NH}_{3} \longrightarrow \mathrm{~N}_{2}+\mathrm{NH}_{4} \mathrm{~F}+\mathrm{Xe}$
$\mathrm{XeF}_{2}+\mathrm{CrF}_{2} \longrightarrow \mathrm{CrF}_{3}+\mathrm{Xe}$
$\mathrm{Pt}+\mathrm{XeF}_{2} \longrightarrow \mathrm{PtF}_{6}+\mathrm{Xe}$
$\mathrm{S}_{8}+\mathrm{XeF}_{2} \longrightarrow \mathrm{SF}_{6}+\mathrm{Xe}$
Q. 38 [8]
$\mathrm{XeO}_{6}{ }^{4-}$
O.S. $=+8$
Q. 39 [20]
$\mathrm{Xe}+\mathrm{O}_{2} \mathrm{~F}_{2} \longrightarrow \mathrm{Xe}_{2} \mathrm{~F}_{2}+\mathrm{O}_{2}$

(C)

No. of lone pair in $\mathrm{XeF}_{2}: 9, \sigma$ bonds in $\mathrm{XeF}_{2}: 2$
No. of lone pair in HF: 3, σ bond : 1
No. of lone pair in $\mathrm{O}_{2}: 4, \sigma$ bonds in $\mathrm{O}_{2}: 1$
Q. 40 [4]
$\mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}$
$3 \mathrm{XeF}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Xe}+\mathrm{XeO}_{3}+12 \mathrm{HF}+\frac{3}{2} \mathrm{O}_{2}$
$2 \mathrm{XeO}_{2} \mathrm{~F}_{2}+\mathrm{SiO}_{2} \longrightarrow 2 \mathrm{XeO}_{3}+\mathrm{SiF}_{4}$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)

So, $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ contains 2,1 and zero $\mathrm{P}-\mathrm{H}$ bonds.
Q. 2 (D)
$2 \mathrm{KBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}+\mathrm{Br}_{2}$ (brown)
Q. 3 (D)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O} 7 \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
Q. 4 (C)
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (Acid base reaction)
$\mathrm{AlN}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{Al}(\mathrm{OH})_{3}$ (Acid base reaction)
$2 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(Acid base reaction)
$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaNO}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NH}_{4} \mathrm{NO}_{2}$
(Double decomposition reaction)
Q. 5 (D)

Due to steric hinderance SF_{6} is not hydrolysed by $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$.
Q. 6 (D)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2}$
$\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
Q. 7 (B)
$\mathrm{H}_{3} \mathrm{PO}_{2}$ is has strong reducing property because of smaller oxidation state $=+1$ and due to $2 \mathrm{P}-\mathrm{H}$ bond
Q. 8 (D)
$\mathrm{C}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{P}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Q. 9 (D)
$\underset{\substack{\downarrow \\+6}}{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \rightarrow \underset{2}{\mathrm{~N}}+\underset{\substack{\mathrm{Cr}_{2} \mathrm{O}_{3} \\+4 \mathrm{H}_{2} \mathrm{O} \\+3}}{ }$
+6 to +3
Q. 10 (B)
$2 \mathrm{NA}\left[\mathrm{BH}_{4}\right]+\mathrm{I}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{X})+2 \mathrm{NaI}+\mathrm{H}_{2}$
$3 \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NH}_{3} \xrightarrow{\Delta} 2 \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}(\mathrm{Y})+12 \mathrm{H}_{2}(\mathrm{Z})$
$X=B_{2} H_{6}$
$Y=B_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$
$\mathrm{Z}=12 \mathrm{H}_{2}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (3)
Q. 2 (2)
Q. 3 (3)
Q. 4 (2)
Q. 5 (1,3)
Q. 6 (3)
Q. 7
Q. 8
(1)
(1)
Q. 9 (5)
Q. 10 (2)
Q. 11 (1)
Q. 12 (1)
Q. 13 (1)
Q. 14 (4)
Q. 15 (2)
Q. 16 (4)
Q. 17 (3)
Q. 18 (4)

Stability of oxides of Halogens is
I $>\mathrm{Cl}>\mathrm{Br}$
Q. 19 (3)
(Bonus)
No option contains all species that show disproportionation reaction.
MnO_{4}^{-}
Mn is in +7 oxidation state (highest) hence cannot be simultaneously oxidized or reduced.
Q. 20 (4)
Q. 21 (2)

JEE-ADVANCED
PREVIOUS YEAR'S
Q. 1 (A)
Q. 2 (A)
(1 \& 2)
$\mathrm{Cl}_{2}+$ cold dil. $\mathrm{NaOH} \longrightarrow \mathrm{NaOCl}+\mathrm{NaCl}$
$\mathrm{Cl}_{2}+$ hot conc. $\mathrm{NaOH} \longrightarrow \mathrm{NaClO}_{3}+\mathrm{NaCl}$
NaOCl is salt of hypochlorous acid $=\mathrm{P}$.
NaOCl_{3} is salt of chloric acid $=\mathrm{Q}$.

$$
\begin{aligned}
& \mathrm{Cl}_{2}+\mathrm{SO}_{2} \xrightarrow{\text { Charcoal }} \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{R}) \\
& \mathrm{SO}_{2} \mathrm{Cl}_{2}+\mathrm{P}_{4} \longrightarrow \mathrm{PCl}_{5}(\mathrm{~S})+\mathrm{SO}_{2} \\
& \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~T})+\mathrm{HCl}
\end{aligned}
$$

Q. 3 (C)

Q. 4 (B,C)
(A) $\mathrm{NH}_{4} \mathrm{NO}_{3} \frac{\Delta}{\text { below } 300^{\circ} \mathrm{C}} \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(B) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{Ba}+3 \mathrm{~N}_{2}$
(D) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ (it does not decompose into N_{2})
Q. 5 (A,B,C)
(A) $\mathrm{Bi}_{2} \mathrm{O}_{5}$ is metallic oxide but $\mathrm{N}_{2} \mathrm{O}_{5}$ is non metallic oxide therefore $\mathrm{Bi}_{2} \mathrm{O}_{5}$ is basic but $\mathrm{N}_{2} \mathrm{O}_{5}$ is acidic.
(B) In $\mathrm{NF}_{3}, \mathrm{~N}$ and F are non metals but $\mathrm{BiF}_{3}, \mathrm{Bi}$ is metal but F is non metal therefore NF_{3} is more covalent than BiF_{3}.
(C) In PH_{3} hydrogen bonding is absent but in NH_{3} hydrogen bonding is present therefore PH_{3} boils at lower temperature than NH_{3}.
(D) Due to small size in $\mathrm{N}-\mathrm{N}$ single bond 1.p. - l.p. repulsion is more than $\mathrm{P}-\mathrm{P}$ single bond therefore $\mathrm{N}-\mathrm{N}$ single bond is weaker than the $\mathrm{P}-\mathrm{P}$ single bond.
Q. 6 (288.00)
$\mathrm{S}_{8}+48 \mathrm{HNO}_{3} \rightarrow 8 \mathrm{H}_{2} \mathrm{SO}_{4}+48 \mathrm{NO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
1 mole of rhombic sulphur produce 16 mole of $\mathrm{H}_{2} \mathrm{O}$ i.e. 288 gm of $\mathrm{H}_{2} \mathrm{O}$

Q. 7 (A,B,D)

Hypochlorite ion: ClO^{\ominus}
Chlorate ion : $\mathrm{ClO}_{3}^{\ominus}$
Per chlorate ion : $\mathrm{ClO}_{4}^{\ominus}$
(A) Acidic order : $\stackrel{+1}{\mathrm{H}} \mathrm{CO}<\stackrel{+5}{\mathrm{HClO}}_{3}<\stackrel{+7}{\mathrm{HClO}_{4}}$

Conjugate base order : $\mathrm{ClO}^{-}>\mathrm{ClO}_{3}^{-}>\mathrm{Clo}_{4}^{-}$
(B) Hypochlorite ion $\left(\mathrm{ClO}^{\ominus}\right): ~: \ddot{C l}-\stackrel{\ominus}{\mathrm{O}}: \quad$ Linear shape

Chlorate ion $\left(\mathrm{ClO}_{3}^{\ominus}\right)$:

 due to resonance
In chlorate ion bond angle changes due to presence of lone pair on chlorine atom. While hypochlorite ion is linear and perchlorate ion is tetrahedral and there is no effect of lone pair on hypochlorite ion.
(C) Disproportionation reaction of
(i) hypochlorite ion : $3 \mathrm{ClO}^{\ominus} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{\ominus}$
(ii) Chlorate ion : $4 \mathrm{ClO}_{3}^{\ominus} \rightarrow 3 \mathrm{ClO}_{4}^{\ominus}+\mathrm{Cl}^{\ominus}$
(D) $\mathrm{ClO}^{-}+\mathrm{SO}_{3}{ }^{2-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{\ominus}$
Q. 8 (6)
Q. 9 (A, B, D)
(A) $4 \mathrm{H}_{3} \mathrm{PO}_{3} \xrightarrow{\Delta} 3 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{PH}_{3}$ (correct)
(B) $\mathrm{H}_{3} \mathrm{PO}_{4}$ has " P " in its highest oxidation state, hence cannot act as a reducing agent (correct)
(C)

(D)

The hydrogen which is directly attached to phosphorous does not ionized in water.

d and f Block Elements

EXERCISES

ELEMENTARY

Q. 1 (3)

Q. 2 (4)

There are 6 electrons in its ultimate and penultimate shell.
Q. 3 (4)
Q. 4 (1)
${ }_{30} \mathrm{Zn}=[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
$\mathrm{Zn}^{+2}=[\mathrm{Ar}] 3 \mathrm{~d}^{10}$ (No. unpaired electron so diamagnetic in nature).
Q. 5 (1)
$\mu=\sqrt{n(n+2)}$ where $n=$ No. of unpaired electrons
Magnetic moment.
Q. 6 (3)
d-block elements; because
(i) Small atomic size
(ii) High nuclear charge
(iii) Presence of vacant d-orbitals.

Q. 7 (3)

Cu , because last electron enters d-orbital $\left(3 d^{10} 4 s^{1}\right)$.

Q. 8 (2)

Cu due to the presence of vacant d-orbital.
Q. 9 (3)
Q. 10 (4)
Cu^{+}do not have any unpaired electron.

Q. 11 (1)

Availability of empty d-orbital to accept lone pair of electrons.
Q. 12 (3)

Diamagnetism is not a characteristic property of
transition metal as they have unpaired electron in dsubshell.
Q. 13 (2)
Q. 14 (4)

Transition elements act as catalyst as they show variable oxidation state.

Q. 15 (1)

In $\mathrm{KMnO}_{4}, \mathrm{Mn}$ is in +7 oxidation state having no unpaired electrons but posses colour due to charge transfer.
Q. 16 (1)

Permanganic Acid $\rightarrow \mathrm{HMnO}_{4}$
Q. 17 (2)

Mn is in higher oxidation state of +7 so acidic in nature.
Q. 18 (4)

General electronic configuration of lanthanides

$$
\begin{aligned}
& (\mathrm{n}-2) \mathrm{f}^{1-14}(\mathrm{n}-1) \mathrm{d}^{0-1} \mathrm{~ns}^{2} \\
\Rightarrow & (\mathrm{n}-2) \mathrm{f}^{1-14}(\mathrm{n}-1) \mathrm{s}^{2} \mathrm{p}^{6} \mathrm{~d}^{0-1} \mathrm{~ns}^{2}
\end{aligned}
$$

Q. 19 (3)

As the atomic number increases in lanthanides due to very weak sheilding effect, Zeff increases and radius decreases.
Q. 20 (3)

Oxidation state of Mn changes from +7 to +2 in acidic medium i.e. one mole of it accepts 5 mole of electrons.
Q. 21 (2)
Ag^{+}forms a complex ion with NH_{3} $\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$

Q. 22 (1)

MnO is ionic due to lower oxidation state.
Q. 23 (1)
Q. 24 (1)
Q. 25 (4)
Q. 26 (1)

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (3)

General electronic configuration of transition elements is [Noble gas] $(\mathrm{n}-1) \mathrm{d}^{1-10} \mathrm{~ns}^{1-2}$.

Q. 2 (3)

Along the period the atomic radius decreases with the increase in nuclear charge (as atomic number increases), whereas the shielding effect of d-electrons added in inner orbitals is small.
Q. 3 (2)
(1) The order of penetration of the electrons present in different sub-shells of same energy level is $s>p$ $>d>f$.
(2) The decrease in size is small after mid way. In the begining, the atomic radius decreases with the increase in nuclear charge (as atomic number increases), where as the shielding effect of delectrons is small. After mid way as the electrons enters the last but one shell, the added d-electron shields the outer most electrons. Hence with the increase in the d-electrons screening effect increases. This counter balances the increased nuclear charge. As a result, the atomic radii remain practically same after chromium.
(3) The filling of 4 f before 5 d orbital results in a regular decrease in atomic radii called Lanthanoid contraction which essentially compensates for the expected increase in atomic size with increasing atomic number. The net result of the lanthanoid contraction is that the second and the third d series exhibit similar radii (e.g., Zr 160 pm , Hf 159 pm).
(4) In transition elements, the atomic volumes are large because the increased nuclear charge is poorly screened and so attracts all the electrons more strongly. In addition, the extra electrons added occupy inner orbitals. Consequently the densities of the transition metals are high. The densities of the second row are high and third row values are even higher because of lanthanoid contraction.

Q. 4 (1)

Strong metallic bonds between the atoms of transition elements attribute to their high melting and boiling points. Zinc has all electrons paired ($[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2}$) and thus do not participate in metallic bonding. So accordingly its melting point is least.

Energy of ns \& ($\mathrm{n}-1$)d have comparable energy so both participates in bonding
Q. 7 (2)

The order of shielding effect of various orbital electrons is $s>p>d>f$. Due to the poor shielding effect of $4 f-$ electrons in 5d-series elements, there is enhanced increase in effective nuclear charge. As a result of this the valence electrons are tightly bound with the nucleus and thus their removal require higher energy.

Q. 8 (3)

The lesser number of oxidation states in the begining of series can be due to the presence of smaller number of electrons to lose or share (Sc, Ti). On the other hand, at the extreme right hand side end $(\mathrm{Cu}, \mathrm{Zn})$, lesser number of oxidation state is due to large number of d electrons so that only a fewer orbitals are available in which the electron can share with other for higher valence.
Q. 9 (1)

Os shows +8 oxidation state in its compound with oxygen i.e., in OsO_{4}.
Q. 10 (1)
Cr^{3+} is most stable because in aqueous solution it has higher CFSE on account of half filled $t^{3}{ }_{2 g}$ energy level of 3d orbitals in octahedral spliting.
Q. 11 (1)

Anode involves oxidation or loss of electron.
Q. 12 (4)
(1) Greater the number of valence electrons, stronger is the resultant bonding and thus greater is the enthalpies of atomization.
(2) Cr^{+}has half-filled valence shell electron configuration $3 \mathrm{~d}^{5}$, so it has higher second ionisation energy. Similarly Cu^{+}has completely filled stable valence shell electron configuration, $3 \mathrm{~d}^{10}$, so it has higher second ionisation energy.
(3) Sum of first two ionisation energies $\left(\mathrm{IE}_{1}+\mathrm{IE}_{2}\right)$ of $\mathrm{Ni}(\mathrm{II})$ is less than that of $\mathrm{Pt}(\mathrm{II})$. Similarly sum of first four ionisation energies of $\mathrm{Pt}(\mathrm{IV})$ is less than that of $\mathrm{Ni}(\mathrm{IV})$.
Q. 13 (2)
${ }_{30} \mathrm{Zn}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{10}$, so $\mathrm{n}=0, \mathrm{Fe}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{6}$, so $\mathrm{n}=4 ; \mathrm{Ni}^{2+}$ $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{8}$, so $\mathrm{n}=2 ; \mathrm{Cu}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{9}$, so $\mathrm{n}=1$.
Q. 14 (1)
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} ; 3 \mathrm{~d}^{5}$ has maximum, 5 unpaired electrons so it will have highest magnetic moment.
Q. 15 (3)
$3.87=\sqrt{n(n+2)} ; n=$ number of unpaired electrons. So $n=3$.
Q. 16 (4)
$\mathrm{n} ; \mathrm{Cr}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{4}$; so $\mathrm{n}=4 ; \mathrm{Mn}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5}$ so $\mathrm{n}=5$; $\mathrm{Fe}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{6}$ so $\mathrm{n}==4$ $\mathrm{n}=$ Number of unpaired electron(s).
Q. 17 (3)

$$
\sqrt{15}=\sqrt{\mathrm{n}(\mathrm{n}+2)} \quad ; \mathrm{n}=3, \text { and three unpaired }
$$ electrons are found when Mn is in Mn^{4+} i.e., $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$ configuration as its metal electron configuration is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$.

Q. 18 (2)
(1) $\mathrm{Cu}^{+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{10}$, so $\mathrm{n}=0 ; \mathrm{Zn}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{10}$, so $\mathrm{n}=0 ; \mathrm{Sc}^{3+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{0}$, so $\mathrm{n}=0$
(2) $\mathrm{Mn}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5}$, so $\mathrm{n}=5 ; \mathrm{Fe}^{3+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5}$, so $\mathrm{n}=5 ; \mathrm{Ni}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{8}$, so $\mathrm{n}=2$
(3) $\mathrm{Cr}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{4}$, so $\mathrm{n}=4 ; \mathrm{Mn}^{3+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{4}$, so $\mathrm{n}=4 ; \mathrm{Sc}^{3+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{0}$, so $\mathrm{n}=0$
(4) $\mathrm{Cu}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{9}$, so $\mathrm{n}=1 ; \mathrm{Ni}^{2+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{8}$, so $\mathrm{n}=2 ; \mathrm{Ti}^{4+}[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{0}$, so $\mathrm{n}=0$

Q. 19 (3)

The colour of the compounds of transition metals may be attributed to the presence of incomplete $(n-1)$ d-sub-shell. Under the influence of approaching ions towards the central metal ion, the d-orbitals of the central metal split into different energy levels. This phenomenon is called crystal field splitting. In the case of the transition metal ions, the electron can be easily promoted from one energy level to another in the same d-sub-shell. These are called d-d transitions. The amount of energy required to excite some of the electrons to higher energy states within the same d-sub-shell corresponds to energy of certain colours of visible light. Therefore, when white light falls on a transition metal compound, some of its energy corresponding to a certain colour, is absorbed and the electron gets raised from lower energy set of orbitals to higher energy set of orbitals.

Q. 20 (1)

Complex pormation $\alpha(\mathrm{Zeff}=\mathrm{Z}-\sigma)$ tendency
Q. 21 (2)

Fully pilled d-subshell
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
$3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$

Q. 22 (2)

HgCl_{2} is volatile is reffered as corrosive sublimate.
Q. 23 (1)

Mo is used become of its high melting point.
Q. 24 (1)
Mn^{2+} acts as autocatalyst
Q. 25 (2)
Q. 26 (4)

In $\mathrm{Ti}^{4+}, \mathrm{Cu}^{+}$and Zn^{2+}, all have electrons paired so all are diamagnetic. Cr^{3+} with electron configuration $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{3}$ has three unpaired electrons. So it undergoes d-d transition of electrons in presence of ligands according to CFT and thus it is coloured.
Q. 27 (3)

As there is no unpaired electron in $\mathrm{Mn}(\mathrm{VII})-[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{0}$; so d-d transition of electrons does not take place. The colour is due to charge transfer spectrum from O^{2-} to empty d-orbitals of $\mathrm{Mn}(\mathrm{VII})$.
Q. 28 (3)
$2 \mathrm{CrO}_{4}^{2-}$ (yellow) $+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (organge) $+\mathrm{H}_{2} \mathrm{O}$.
Q. 29 (1)
$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$5 \mathrm{SO}_{3}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{SO}_{4}^{2-}$
Q. $30 \quad$ (1)

Q. 31 (2)
$\underset{\text { ruby solid }}{\mathrm{CrO}_{3}}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{O}$
Q. 32 (2)
MnO_{4}^{-}has purple colour due to change transfer
$\mathrm{Mn}^{7+}, \mathrm{O}^{2-} \stackrel{\text { CTLM }}{\stackrel{\text { CTML }}{ }} \mathrm{Mn}^{6+}, \mathrm{O}^{-}$
Q. 33 (2)
$\mathrm{Mn}_{2} \mathrm{O}_{7}$ is an acid anhydride of HMnO_{4} and thus MnO_{4}^{-} is oxo-salt of $\mathrm{Mn}_{2} \mathrm{O}_{7}$.
$\mathrm{Mn}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HMnO}_{4}$;
$2 \mathrm{HMnO}_{4}+2 \mathrm{KOH} \longrightarrow 2 \mathrm{KMnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
Q. 34 (1) KMnO_{4} acts as self indicator.
Q. 35 (1)

Blue Blue in ether.

Q. 36 (2)
$\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$(weak alkaline medium).
Q. 37 (2)
(1) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cl}_{2}$
(2) Chromyl chloride test; $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+4 \mathrm{Cl}^{-}+6 \mathrm{H}^{+} \longrightarrow$ $2 \mathrm{CrO}_{2} \mathrm{Cl}_{2} \uparrow$ (deep red) $+3 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{MnO}_{2}+4 \mathrm{HCl} \longrightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(4) $2 \mathrm{Cl}^{-}+\mathrm{F}_{2} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{~F}^{-}$
Q. 38 (1)
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \longrightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$.
Q. 39 (3)
$4 \mathrm{FeO} . \mathrm{Cr}_{2} \mathrm{O}_{3}$ (chromite ore) $+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2}$

Q. 40 (1)

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3} \text { (green) }
$$

Q. 41 (1)
$2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{KHSO}_{4}+\left(\mathrm{MnO}_{3}\right)_{2} \mathrm{SO}_{4}+$
$2 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{MnO}_{3}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mn}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}$
Q. 42 (4)
$4 \mathrm{FeSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{Fe}(\mathrm{OH}) \cdot \mathrm{SO}_{4}$ (basic ferric sulphate)
Q. 43 (3)

Cold dilute alkaline KMnO_{4} is Bayer's neagent.
Q. 44 (1)
(A) Cr^{2+} is reducing as it involves change from d^{4} to d^{3}, the latter is more stable configuration $\left(\mathrm{t}^{3}{ }_{2 \mathrm{~g}}\right) \mathrm{Mn}$ (III) to $\mathrm{Mn}(\mathrm{II})$ is from $3 \mathrm{~d}^{4}$ to $3 \mathrm{~d}^{5}$ again $3 \mathrm{~d}^{5}$ is an extra stable configuration.
(B) Due to higher CFSE of d^{6} configuration in presence of ligands which more than compensates the $3^{\text {rd }} I E$.
(C) The hydration or lattice energy more than compensates the ionisation enthalpy involved in removing electron from d^{1}.

Q. 45 (3)

Cu^{2+} ion ($3 \mathrm{~d}^{9}$) absorbs red light from the visible region, for the promotion of 3 d electrons, the ions reflect blue light and appear blue.

Q. 46 (4)

$\mathrm{Ni}^{2+}, \mathrm{Fe}^{2+}$ and Cu^{2+} has 2, 4 and 1 unpaired electrons respectively. So in presence of ligands d-d transition takes place and these hydrated ions produce colour in aqueous solutions. Cu^{+}is diamagnetic with $3 \mathrm{~d}^{10}$ configuration; so no d-d transition is possible and thus colourless.
Q. 47 (2)

MO is catalytic promoter \& it improves catalytic properties as catalyst.
Q. 48 (4)

The catalytic property of transition metals is due to their tendency to form reaction intermediates with suitable reactants. These intermediates give reaction paths of lower activation energy and, therefore, increase the rate of the reaction.
These reaction intermediates readily decompose yielding the products and regenerating the original substance. The transition metals form these reaction intermediates due to the presence of vacant orbitals or their tendency to form variable oxidation states.
(4)

The transition metals form a large number of interstitial compounds in which small atoms like hydrogen, carbon, boron and nitrogen occupy interstitial sites in their lattices
Q. 50 (4)
(A) This activity is ascribed to their ability to adopt multiple oxidation state and to form complexes.
(B) Because of having larger number of unpaired electrons in their atoms, they have stronger interatomic interaction and hence stronger bonding between the atoms.
(C) Transition metals like $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ etc. form interstitial compounds with elements such as hydrogen, boron, carbon and nitrogen. The small atoms of these non-metallic elements ($\mathrm{H}, \mathrm{B}, \mathrm{C}, \mathrm{N}$, etc.) get trapped in vacant spaces of the lattices of the transition metal atoms.

Q. 51 (2)

$\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{+} \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ (prussian blue)

Q. 52 (3)

Hydrated FeCl_{3} exists as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot \mathrm{H}_{2} \mathrm{O}$; it is factual.
Q. 53 (4)

It is a white powder which becomes yellow on heating due to change in the structure of lattice (due to cation excess defect) but again turns white on cooling.
Q. 54 (4)
$\mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$.
Green crust of basic copper carbonate is formed.
Q. 55 (2)
$\mathrm{CuSO}_{4}+\mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2} \uparrow+\mathrm{K}_{2} \mathrm{SO}_{4}$
$\mathrm{CuSO}_{4}+\mathrm{dilH}_{2} \mathrm{SO}_{4} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{SO}_{4}$
Q. 56 (4)

Mixture of CuSO_{4} and lime is called Bordeaux mixture which is used as fungicides.
Q. 57 (4)

Dissolves in both ether and water forming solvated/ hydrated monomeric species,

$$
\begin{gathered}
{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}} \\
\text { solvated } \mathrm{FeCl}_{3} \\
\text { hydrated } \mathrm{FeCl}_{3}
\end{gathered}
$$

Q. 58 (4)
$\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, are coinage metal used in coin in older days.
Q. 59 (2)
$5 \mathrm{AgNO}_{3}+3 \mathrm{I}_{2}$ (excess) $+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HIO}_{3}+5 \mathrm{AgI}+$ $5 \mathrm{HNO}_{3}$.
Q. 60 (2)
Q. 61 (1)

$$
\begin{aligned}
& 100 \%-24 \text { carat } \\
& 1 \%=\frac{24}{100} \\
& 75 \%=\frac{24}{100} \times 75=18
\end{aligned}
$$

Q. 62 (2)

$$
\mathrm{ZnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Zn}(\mathrm{OH}) \mathrm{Cl}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} .
$$

Q. 63 (4)
$\mathrm{Ag}^{+}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$
Q. 64 (1)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

One electron jumps from 4s-orbital to 3d-orbital to have stable half-filled electronic configuration.
Q. 2 (D)
(A) According to the definition of transition metals, they have partially filled ($n-1$)d orbitals except copper and zinc thus mostly show paramagnetism.
(B) It is the property of heavier p-block elements.
(C) Transition metals form a large number of alloys. The transition metals are quite similar in size and, therefore, the atoms of one metal can substitute the atoms of other metal in its crystal lattice. Thus, on cooling a mixture solution of two or more transition metals, solid alloys are formed.
(D) Show variable oxidation states as $(\mathrm{n}-1) \mathrm{d}$ and ns orbitals have nearly the same energy and, thus ns as well as ($n-1$)d orbital electrons can be lost giving variable oxidation state.

Q. 3 (B)

After mid way i.e. after Cr as the electrons enters the last but one shell, the added d-electron shields the outer most electrons. Hence with the increase in the delectrons screening effect increases. This counter balances the increased nuclear charge. As a result, the atomic radii remain practically same after chromium.

Q. 4 (D)

The atomic radii of the transition metals lie in-between those of s - and p-block elements. In the begining, the atomic radius decreases with the increase in nuclear charge (as atomic number increases), whereas the shielding effect of d-electrons is small and orbital electrons are added to the penultimate d-subshell rather than to the outer shell of the atom.

Q. 5 (A)

This phenomenon is associated with the intervention of the 4 f orbitals which must be filled before the 5 d series of elements begin. The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanoid contraction. This is because of poor shielding of one of the 4 f -electrons by another in the sub-shell.

Q. 6 (C)

$(\mathrm{A})=8.95$
$(B)=8.91$
(C) $=3.0$
$(\mathrm{D})=7.14$.

Across the period atomic volumes decreases upto copper due poor shielding of d-orbital electrons and addition of extra electrons in inner orbitals and then increases in zinc due to interelectronic repulsions in completely filled d- and s-orbitals. Consequently densities increase from Sc to Cu and then decreases in Zn.

Q. 7 (A)

Valence shell electron configuration of ${ }_{30} \mathrm{Zn}^{2+}$ is $3 \mathrm{~d}^{10}$ $4 s^{\circ}$. As there is no unpaired electrons for d-d transition, the solution of ions will be colourless.
Valence shell electron configuration of ${ }_{28} \mathrm{Ni}^{2+}$ is $3 \mathrm{~d}^{8} 4 \mathrm{~s}^{\circ}$. As there are 2 unpaired electrons, there is d - d transition of electron, so the solution of ions will be coloured. Valence shell electron configuration of ${ }_{24} \mathrm{Cr}^{3+}$ is $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{\circ}$. As there are 3 unpaired electrons, there is d - d transition of electron, so the solution of ions will be coloured.

Q. 8 (A)

(A) Zn^{+2} has $3 \mathrm{~d}^{10}$ configuration so it is more stable than $\mathrm{Zn}^{+3}\left(3 \mathrm{~d}^{9}\right)$.

Q. 9 (A)

It is an amphoteric in nature and it reacts with alkalies as well as with acids to give $\mathrm{V}_{4} \mathrm{O}_{9}{ }^{2-}$ and VO^{2+} respectively.
Q. 10 (A)

Electron configuration of Mn is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}$ and thus it contains five unpaired electrons. Hence it can show the highest oxidation state equal to +7 .

Q. 11 (A)

$\mathrm{Cr}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Cr}^{2+}, \mathrm{E}^{\Theta}=-0.41$ volts and
$\mathrm{Mn}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}, \mathrm{E}^{\Theta}=+1.51$ volts
This shows that Cr^{2+} is unstable and has a tendency to acquire more stable Cr^{3+} state by acting as a reducing agent. On the other hand Mn^{3+} is unstable and is reduced to more stable Mn^{2+} state.

Q. 12 (C)

(A) Valence shell electron configuration of V^{3+} is $[\mathrm{Ar}]^{18}$ $3 d^{2}$; so $n=2$
(B) Valence shell electron configuration of Cr^{3+} is $[\mathrm{Ar}]^{18}$ $3 d^{3}$; so $n=3$
(C) Valence shell electron configuration of Fe^{3+} is $[\mathrm{Ar}]^{18}$ $3 \mathrm{~d}^{5}$; so $\mathrm{n}=5$
(D) Valence shell electron configuration of Co^{3+} is $[\mathrm{Ar}]^{18}$ $3 \mathrm{~d}^{6}$; so $\mathrm{n}=4$

Q. 13 (B)

(A) $\mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$; valence shell electron configuration of Mn^{2+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5}$; so $\mathrm{n}=5$
(B) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$; valence shell electron configuration of Cu^{2+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{9}$; so $\mathrm{n}=1$
(C) $\mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; valence shell electron configuraiton of Fe^{2+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{6}$; so $\mathrm{n}=4$
(D) $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; valence shell electron configuration of Ni^{2+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{8}$; so $\mathrm{n}=2$
Paramagnetism increases with increasing number of unpaired electrons. Thus Cu^{2+} has lowest degree of paramagnetism.
Q. 14 (D)
(A) Valence shell electron configuration of Cu^{+}is $[\mathrm{Ar}]^{18}$ $3 \mathrm{~d}^{10}$; so $\mathrm{n}=0$
(B) Valence shell electron configuration of Zn^{2+} is $[\mathrm{Ar}]^{18}$ $3 \mathrm{~d}^{10}$; so $\mathrm{n}=0$
(C) Valence shell electron configuration of Sc^{3+} is $[\mathrm{Ar}]^{18}$ $3 d^{0}$; so $\mathrm{n}=0$
(D) Valence shell electron configuration of V^{4+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{1}$; so $\mathrm{n}=1$
As V^{4+} has one unpaired electron and so in presence of water as ligand it will undergo d-d transition of
electron. Hence V^{4+} ions will produce colour in the solution.

Q. 15 (B)

(B) In CuF_{2} the valence shell electron configuration of Cu^{2+} is $3 \mathrm{~d}^{9}$ and thus it has one unpaired electron. So dd transition possible and compound is coloured in aqueous solution.

Q. 16 (C)

(I) Show variable oxidation states as ($\mathrm{n}-1$)d and ns orbitals have nearly the same energy and, thus ns as well as ($n-1$)d orbital electrons can be lost giving variable oxidation state.
(II) Colour of the compounds may be attributed to the incomplete ($n-1$)d subshell which may involved in dd transition of electrons in presence of ligands.
(III) They have low volatility because of high enthalpies of atomization on account of strong metallic bonding.

Q. 17 (C)

$\mathrm{Zn}^{2+}, \mathrm{Li}^{+}, \mathrm{K}^{+}$and Al^{3+} are diamagnetic and, therefore, do not have unpaired electrons. So compounds containing these ions are colourless. But Co^{2+} contains three unpaired electrons and, therefore, $\mathrm{d}-\mathrm{d}$ transition of electrons takes place and thus its compound is coloured.

Q. 18 (B)

(A) Associated with d-d transition of electron.
(B) The transition metals form the reaction intermediates due to the presence of vacant orbitals or their tendency to form variable oxidation states.
(C) Associated with the number of unpaired electrons participating in metallic bonding.
(D) As $\mu=\sqrt{n(n+2)}$, so it is associated with number of unpaired electron.

Q. 19 (A)

(I) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}, \mathrm{x}+6(0)=+3$; so $\mathrm{x}=+3$

(III) $\mathrm{K}_{3}\left[\mathrm{CrO}_{8}\right]^{3-}$ or $\left[\mathrm{Cr}\left(\mathrm{O}_{2}\right)_{4}\right]^{3-}$, here ligand is peroxo i.e. $\mathrm{O}_{2}{ }_{2}^{2-} ; \mathrm{x}+4(-2)=-3$; so $\mathrm{x}=+5$.
(IV) $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CrO}_{4}$ or $\left[\mathrm{Cr}\left(\mathrm{O}_{2}\right)_{2}\right]$, here ligand is peroxo i.e. $\mathrm{O}_{2}{ }^{2-} ; \mathrm{x}+2(-2)=0$; so $\mathrm{x}=+4$.
Q. 20 (C)
(A) In $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$, the valence shell electron configuration of $\mathrm{Cr}(\mathrm{VI})$ is $3 \mathrm{~d}^{0}$. Thus $\mathrm{Cr}(\mathrm{VI})$ is diamagnetic but coloured due to the charge transfer spectrum.
(B) In $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{TiCl}_{6}\right]$, the valence shell electron configuration of $\mathrm{Ti}(\mathrm{IV})$ is $3 \mathrm{~d}^{0}$. Thus $\mathrm{Ti}(\mathrm{IV})$ is diamagnetic and colourless.
(C) In VOSO_{4}, the valence shell electron configuration of $V(I V)$ is $3 d^{1}$. Thus $V(I V)$ is paramagnetic and blue coloured due to d-d transition.
(D) In $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$, the valence shell electron configuration of $\mathrm{Cu}(\mathrm{I})$ is $3 \mathrm{~d}^{10}$. Thus $\mathrm{Cu}(\mathrm{I})$ is diamagnetic and colourless.

Q. 21 (A)

$3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$.

Q. 22 (C)

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{H}^{+}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CrO}\left(\mathrm{O}_{2}\right)_{2}$ (blue coloured) $+5 \mathrm{H}_{2} \mathrm{O}$.
Q. 23 (A)
$2 \mathrm{MnO}_{4}{ }^{-}+5 \mathrm{SO}_{3}{ }^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+3$ $\mathrm{H}_{2} \mathrm{O}$.
$\therefore \frac{2}{5}$ mole of $\mathrm{MnO}_{4}{ }^{-}$for one mole $\mathrm{SO}_{3}{ }^{2-}$.
Q. 24 (B)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$. green coloured powder blown in air is $\mathrm{Cr}_{2} \mathrm{O}_{3}$.

Q. 25 (A)

$6 \mathrm{KMnO}_{4}+10 \mathrm{FeC}_{2} \mathrm{O}_{4}+24 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 3 \mathrm{~K}_{2} \mathrm{SO}_{4}+$ $6 \mathrm{MnSO}_{4}+5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+20 \mathrm{CO}_{2}+24 \mathrm{H}_{2} \mathrm{O}$.
$\therefore \frac{3}{5}$ mole of KMnO_{4} for one mole ferrous oxalate.

Q. 26 (B)

(A) Coloured due to charge transfer from ligand to metal ion.
(B) Valence shell electron configuration of $\mathrm{Cu}(\mathrm{I})$ is $3 \mathrm{~d}^{10}$ and, therefore, all electrons are paired ; Valence shell electron configuration of $\mathrm{Cu}(\mathrm{II})$ is $3 \mathrm{~d}^{9}$ and, therefore, one electron is unpaired.
(C) CrO_{3} is an acid anhydride of chromic acid.
(D) Valence shell electron configuration of Ti^{3+} is $3 \mathrm{~d}^{1}$ and, therefore, has one unpaired electron; so it is coloured. But valence shell electron configuration of Sc^{3+} is $3 \mathrm{~d}^{0}$ and, therefore, it has no unpaired electron; so it is colourless.
Q. 27 (A)
(A) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is not used as primary standard because it is hygroscopic in nature.
(B) $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{KHSO}_{4}+\left(\mathrm{MnO}_{3}\right)_{2} \mathrm{SO}_{4}$ $+2 \mathrm{H}_{2} \mathrm{O}$
$\left(\mathrm{MnO}_{3}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mn}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) $\mathrm{PH}_{3}+6 \mathrm{AgNO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Ag}+6 \mathrm{HNO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{3}$ $\mathrm{AsH}_{3}+6 \mathrm{AgNO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Ag}+6 \mathrm{HNO}_{3}+$ $\mathrm{H}_{3} \mathrm{AsO}_{3}$
(D) $3 \mathrm{FeS}_{2}+2 \mathrm{H}_{2} \mathrm{O}+11 \mathrm{O}_{2} \longrightarrow 2 \mathrm{FeSO}_{4}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ $2 \mathrm{H}_{2} \mathrm{SO}_{4}$
Q. 28 (C)
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{3}$.
Q. 29 (C)
(A), (B) and (D) given hydrated FeCl_{3} and (C) yields anhydrous FeCl_{3} according to the reaction,
$2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \xrightarrow{\Delta} 2 \mathrm{FeCl}_{3}$ (anhydrous)
Q. 30 (D)

Q. 31 (D)
HNO_{3} being strong oxidising agent oxidises iron to its oxides $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ which forms a thin protective layer over the metal. This makes the iron passive.
Q. 32 (A)
$\mathrm{Cu}(\mathrm{I})$ thiocyanate is used for the gravimetric estimation of $\mathrm{Cu}($ II $)$.
Q. 33 (A)
$2 \mathrm{CuCl}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cu}_{2} \mathrm{Cl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$.
Q. 34 (D)

It is factual.
Q. 35 (C)

Zn has great tendency to oxidise to Zn^{2+} because of the negative value of SRP. So it is taken as anode in electro-chemical cell.
Q. 36 (A)

German silver contains $\mathrm{Cu}=60 \% ; \mathrm{Zn}=20 \%$; and $\mathrm{Ni}=$ 20%.

Q. 37 (A)

Mixture of anhydrous zinc chloride and concentrated HCl is called Lucas reagent. It is used for the distinction between primary, secondary and tertiary alcohols.
Q. 38 (B)
$\mathrm{Zn}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
Q. 39 (C)
$\mathrm{Ag}^{+}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow\left[\mathrm{Ag}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$; soluble complex is formed.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (ABC)
Q. 2 (AB)

This ion Mc aorther forrest cyanide process used for Ag, Au (Refer metallurgy)
Q. 3 (BC)

Covalent character α polarisity power α charge
Q. 4 (ABC)
(A) The great tendency of transition metal ions to form complexes is due to : (i) small size of the atoms and ions, (ii) high nuclear charge and (iii) availability of vacant d-orbitals of suitable energy to accept lone pairs of electrons donated by ligands.
(B) The existence of the transition elements in different oxidation states is due to the participation of inner ($\mathrm{n}-1$) d-electrons in addition to outer ns-electrons because, the energies of the $n s$ and ($n-1$) d-sub-shells are nearly same.
(C) The transition metals show magnetic properties due to presence of number of unpaired electrons in d-orbitals.
(D) Most the transition metal ions are coloured, because they have unpaired electrons which can undergo d-d- transition in presence of ligands.
Q. 5 (AB)

(AB)
Zr \& Hf have same atomic sizes as in Hf weak shielding of both $d \& f$ electron contracts its size \& make it comparable with Zr
Q. 7 (ABC)
$\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
potash alum $\rightarrow \mathrm{K}_{\mathrm{aq} .}^{+}+\mathrm{Al}_{\mathrm{aq} .}^{3+}+\mathrm{SO}_{4}^{2-}$
Q. 8 (ABC)

The great tendency of transition metal ions to form complexes is due to : (i) small size of the atoms and ions, (ii) high nuclear charge and (iii) availability of vacant d-orbitals of suitable energy to accept lone pairs of electrons donated by ligands.
Q. 9 (ABD)
$4 \mathrm{Cl}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{CrO}_{2} \mathrm{CI}_{2} \uparrow$ (deep red) + $3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CrO}_{2} \mathrm{CI}_{2}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}$ (yellow) $+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CI}^{-}$
$\mathrm{CrO}_{2} \mathrm{CI}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CrO}_{4}+\mathrm{HCI}$
Q. 10 (BCD)

Interstitial compound results in
(A) hardness increses
(B) Malleability (decreases)
(C) Ductality (decreases)

Q. 11 (AB)

Weak metallic bond as due to poor shielding of $\mathrm{d} \& \mathrm{f}$ orbital its ionisation energy became high \& kernel formation becomes difficult.
Q. 12 (ABC)

All statements are comeet
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]$

Q. 13 (AB)

Ionisation energies are between s \& p-block.
Q. 14 (ABD)
O.S. different by 1 unit

Q. 15 (ABC)

oxide of $\mathrm{Be}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{As}$, are amphoteric
Q. 16 (ABC)

Transition element froms intershtial compound.
Q. 17 (ABCD)
(A) $2 \mathrm{Ag}^{+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \longrightarrow 2 \mathrm{Ag}^{2+}+2 \mathrm{SO}_{4}^{2-}$
$\mathrm{Ag}^{2+}+4 \mathrm{py} \longrightarrow\left[\mathrm{Ag}(\mathrm{py})_{4}\right]^{2+}(\mathrm{red})$.
(B) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
(D) Ti^{2+} has two unpaired electrons; So d-d transition is possible while T^{4+} has no electrons in d-orbitals.

Q. 18 (AB)

(A) and (B) reactions separately comprise the iodometric titration.
Q. 19 (ABD)
(A) The colour of the transition metal ions / compounds is attributed to d-d transition of electrons e.g. in $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$.
(B) Charge transfer spectrum e.g. in MnO_{4}^{-}(no d electrons present).
(C) The colour change is not because of change in the geometry of the molecules.
(D) Yellow colour of the AgI is due to the polarisation of I^{-}by Ag^{+}.
Q. 20 (AC)
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{O}_{2}^{2-} \rightarrow \mathrm{CrO}_{5}+\mathrm{O}^{2-}$
blue
$\mathrm{CrO}_{5}+\mathrm{H}^{+} \rightarrow \mathrm{Cr}^{3+}+\mathrm{O}_{2}$
Green
Q. 21 (ABC)
(A) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}$
(B) $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 5 \mathrm{O}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
(C) $5 \mathrm{Fe}^{2+}+5 \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
Q. 22 (AB)
$2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2}\left(\mathrm{KNO}_{3}\right) \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{MnO}_{4}^{2-} \xrightarrow[\text { oxidation }]{\text { electroltic }} \mathrm{MnO}_{4}^{-}+\mathrm{e}^{-}$.
Q. 23 (ABC)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow[\text { exothermic reaction }]{\Delta} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$ (volcanic reaction)
Q. 24 (ABC)
(A) Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ to give a deep blue solution due to the formation of CrO_{5}.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+}+4 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CrO}_{5}+5 \mathrm{H}_{2} \mathrm{O}
$$

(B) In alkaline medium with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, a red-brown $\mathrm{K}_{2} \mathrm{CrO}_{8}$ (diperoxo) is formed. It is tetra peroxo species $\left[\mathrm{Cr}\left(\mathrm{O}_{2}\right)_{4}\right]^{3-}$ and thus the Cr is in +V oxidation state.
(C) In ammoniacal solution a dark red-brown compound, $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CrO}_{4}$ - diperoxo compound with $\mathrm{Cr}(\mathrm{IV})$ is formed.
(D) $\mathrm{In}_{\mathrm{CrO}}^{4}{ }^{2-}$ - the Cr is in its highest +6 oxidation state. So it can not be further oxidised.
Q. 25 (AB)
(A) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$
$\mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(B) $3 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{CO}_{2} \longrightarrow 2 \mathrm{KMnO}_{4}+\mathrm{MnO}_{2}+2 \mathrm{~K}_{2} \mathrm{CO}_{3}$.
(C) No colour change.
(D) No colour change.
Q. 26 (BC)

Q. 27 (AB)

F- has low polarisbility \& hence CuF is ion but $\mathrm{Br}^{-} \& \mathrm{Cl}^{-}$ ion has high polarisibity \& $\mathrm{CuCl}_{2} \& \mathrm{CuBr}_{2}$ are ionic in nature.
Q. 28 (ABCD)

Q. 29 (AD)
(A) Anhydrous ; (B) Hydrated ; (C) Hydrated ; (D) Anhydrous
Q. 30 (AB)

Fe, Pt Refer metallurgy
Q. 31 (AD)

Quinol is acting as an acid as it is donating H^{+}ions and also as a reducing agent due as it reduces Ag^{+}to Ag
Q. 32 (AB)
(A) $6 \mathrm{AgNO}_{3}+3 \mathrm{I}_{2}$ (excess) $+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HIO}_{3}+5 \mathrm{AgI}+$ $5 \mathrm{HNO}_{3}$
(B) AgNO_{3} (excess) $+\mathrm{KCN} \longrightarrow \mathrm{AgCN}$ (white) $+\mathrm{KNO}_{3}$.
Q. 33 (AB)
(A) Used in developing of photography plate. i.e. to reduce Ag^{+}to $\mathrm{Ag} \downarrow$.
(B) Fixing of photography plate i.e. to remove unreduced AgBr .
(C) \& (D) reactions are not involved in photography.
Q. 34 (ABC)
(A) $\mathrm{PH}_{3}+6 \mathrm{AgNO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Ag}+6 \mathrm{HNO}_{3}+$ $\mathrm{H}_{3} \mathrm{PO}_{3}$
(B) It possesses powerful corrosive action on organic tissues, which it turns black especially in presence of light. The blackening is due to finely divided metallic silver, reduced by organic tissue.
(C) $\mathrm{AgCN}(\mathrm{s})+\mathrm{CN}^{-}(\mathrm{aq}) \longrightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$(soluble complex).
(D) Zr is the element of the 4 d series $4^{\text {th }}$ group while Ta is a element of 5 d series $5^{\text {th }}$ group so have differ atomic sizes.

Q. 35 (C)

$\mu=1.73$ indicates that the titanium ion has one unpaired electron. The valence shell electron configuration of titanium is $[A r]^{18} 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$. So it will lose three electrons to have one unpaired electron and thus the oxidation state of titanium is +3 .
Q. 36 (C)
(A) In VCl_{3}, the vanadium(III) has valence shell electron configuration $3 d^{2}$. So its aqueous solution will be coloured due to d-d-transition of electron.
(B) In VOSO_{4}, the vanadium(IV) has valence shell electron configuration $3 d^{1}$. So its aqueous solution will be coloured due to d-d-transition of electron.
(C) In $\mathrm{Na}_{3} \mathrm{VO}_{4}$, the vanadium(V) has valence shell electron configuration $3 \mathrm{~d}^{0}$. So its aqueous solution will be colourless as there will be no d-d-transition.
(D) In $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SO}_{4}\right] 2 \mathrm{H}_{2} \mathrm{O}$, the vanadium(II) has valence shell electron configuration $3 \mathrm{~d}^{3}$. So its aqueous solution will be coloured due to d-d-transition of electron.

Q. 37 (D)

(A) Mn^{2+} has five unpaired electrons in 3 d -sub shell as its valence shell configuration is $3 \mathrm{~d}^{5}$. (B) It is a obvious fact (C) Number of unpaired electrons first increases from one(Sc) to five(Mn) and then pairing from (Fe) begins so number of unpaired electrons decreases. As a consequence, the paramagnetism first increases and then decreases.
Q. 38 (D)
(A) $2 \mathrm{MnO}_{4}^{-}+2 \mathrm{NH}_{3} \longrightarrow 2 \mathrm{MnO}_{2}+\mathrm{N}_{2}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
(B) It is due to charge transfer from O^{2-} to empty d orbital of $\mathrm{Mn}(\mathrm{VII})$.
(C) MnO_{4}^{-}is in highest oxidation state i.e. +VII and thus can not be oxidised further.
(D) $\mathrm{MnO}_{2}+\mathrm{OH} \longrightarrow \mathrm{MnO}_{2}^{2-} \xrightarrow{\left[\mathrm{e}^{-}\right]} \mathrm{MnO}_{4}^{-}$
Q. 39 (A)
(A) In $\mathrm{MnSO}_{4},=+\mathrm{II}$; (B) $\mathrm{MnO}_{4}{ }^{2-}=+\mathrm{VI}$; (C) $\mathrm{MnO}_{4}^{-}=$ +VII

Q. 40 (D)

(III) Electron configuration of $\mathrm{Mn}(\mathrm{VI})$ in $\mathrm{MnO}_{4}{ }^{2-}$ is $[\mathrm{Ar}]^{18}$ $3 d^{1}$. So it is paramagnetic and tetrahedral. Electron configuration of $\mathrm{Mn}(\mathrm{VII})$ in $\mathrm{MnO}_{4}{ }^{-}$is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{0}$. So it is diamagnetic and tetrahedral.
(IV) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
(Solution : 52 to 54)
$\mathrm{A}=\mathrm{MnSO}_{4}, \mathrm{~B}=\mathrm{K}_{2} \mathrm{MnO}_{4}, \mathrm{C}=\mathrm{KMnO}_{4}, \mathrm{D}=\mathrm{MnO}_{2}, \mathrm{E}$ $=\mathrm{HMnO}_{4}, \mathrm{~F}=\mathrm{BaSO}_{4}$.
$\mathrm{MnSO}_{4}(\mathrm{~A})+2 \mathrm{KNO}_{3}+\mathrm{K}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}(\mathrm{~B})+$ $2 \mathrm{KNO}_{2}+2 \mathrm{CO}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}$
$2 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{MnO}_{4}^{-}(\mathrm{C})+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{2} \downarrow ; \mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{Br}_{2}+$
$2 \mathrm{NaOH} \longrightarrow \mathrm{MnO}_{2}(\mathrm{D})+2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{2}+4 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}+5 \mathrm{PbO}_{2}+6 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{HMnO}_{4}(\mathrm{E})+$ $5 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{SO}_{4}^{2-}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaSO}_{4} \downarrow$ (white) (F)
Q. 41 (A) - q, s; (B) - r, s; (C) - p, s ; (D) - p, s
(A) $3 \stackrel{+6}{\mathrm{Mn} \mathrm{O}_{4}{ }^{2-}}+2 \mathrm{CO}_{2} \longrightarrow 2 \stackrel{+7}{\mathrm{Mn}} \mathrm{O}_{4}^{-}+\stackrel{+4}{\mathrm{Mn}^{2}} \mathrm{O}_{2}+2 \mathrm{CO}_{3}{ }^{2-}$. The nature of the reaction is thus disproportionation and in the product, MnO_{4}^{-}, Mn showed the highest oxidation state of +7 .
(B) $2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$

The nature of the reaction is redox only and in the product, $\mathrm{CrO}_{4}^{2-}, \mathrm{Cr}$ showed the highest oxidation state
of +6 .

; hence
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ has dimeric bridged tetrahedral metal ion.
(C) $2 \mathrm{FeSO}_{4} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}+\mathrm{SO}_{3} \cdot \mathrm{SO}_{2}$ and SO_{3} are pungent smelling colourless gases. In SO_{3}, the sulphur is present in its highest oxidation state of +6 .
(D) $\stackrel{2+}{\mathrm{Cu} \mathrm{Cl}_{2}} 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \stackrel{2+}{\mathrm{C}} \mathrm{CO}+\stackrel{1+}{\mathrm{Cu}_{2}} \mathrm{Cl}_{2}+2 \mathrm{HCI}+\mathrm{CI}_{2}+$
$5 \mathrm{H}_{2} \mathrm{O}$. HCl and Cl_{2} are pungent smelling gases. In CuO , Cu is present in its highest oxidation state of +2 .
Q. 42 (A) - s ; (B) - q, r; (C) -q ; (D) - p
(A) $\mathrm{Cu}(\mathrm{I})$ and Zn (II) have valence shell electron configuration $3 \mathrm{~d}^{10}$; all electrons are paired so the complexes are diamagnetic and colourless.
(B) $\mathrm{Mn}(+7)$ and $\mathrm{Cr}(+6)$ have valence shell electron configuration $3 \mathrm{~d}^{0}$. There is no electron in d-orbitals but they are coloured due to charge transfer spectrum. Mn and Cr showed their highest oxidation state of +7 and +6 respectively.
(C) $\mathrm{Cu}(\mathrm{I})$ and Hg (II) have valence shell electron configuration $3 \mathrm{~d}^{10}$; all electrons are paired so the compound are diamagnetic but they are coloured due to charge transfer spectrum.
(D) V (IV) and $\mathrm{Cu}(\mathrm{II})$ have valence shell electron configuration $3 \mathrm{~d}^{1}$ and $3 \mathrm{~d}^{9}$ respectively. Both have one unpaired electrons, so undergo d-d-transition of electron and have similar colour.
Q. 43 (A) $-\mathrm{r} ;(\mathrm{B})-\mathrm{s} ;(\mathrm{C})-\mathrm{p}$; (D) - q.
(A) Mixture of BaSO_{4} (white) and ZnS (white) is called lithopone and is used as white paint.
(B) Double salt, $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is called Mohr's salt.
(C) Silver nitrate is commercially named as lunar caustic. (D) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ is a blue colour compound and is called as Schwitzer`s regent.

NUMERICAL VALUE BASED

Q. 1 [3]

CrO_{4}^{2-}	MnO_{4}^{-}	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	
\downarrow	\downarrow	\downarrow	
d^{0}	$\mathrm{~d}^{0}$	$\mathrm{~d}^{0}$	type

Q. 2 [4]

$$
\mathrm{Fe}^{2+}:[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{6}
$$

4
Q. 3 [3]

$$
\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=3.87 \mathrm{BM}, \mathrm{n}=3
$$

Q. 4 [2]
(A) $=\operatorname{SnCl}_{2} ;(B)=\operatorname{Sn}(\mathrm{OH}) \mathrm{Cl} ;(\mathrm{C})=\operatorname{Sn}(\mathrm{OH})_{2}$

$$
\underset{(A)}{\mathrm{SnCl}_{2}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sn}(\mathrm{OH}) \mathrm{Cl}+\mathrm{HCl}
$$

$$
\mathrm{SnCl}_{2}+\mathrm{NaOH} \rightarrow \underset{(\mathrm{C})}{\mathrm{Sn})_{2}}+2 \mathrm{NaCl}
$$

$$
\mathrm{Sn}(\mathrm{OH})_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
3 \mathrm{SnCl}_{2}+2 \mathrm{AuCl}_{3} \rightarrow 3 \mathrm{SnCl}_{4}+2 \mathrm{Au}
$$

$$
\mathrm{SnCl}_{2}+2 \mathrm{HCl}+\mathrm{I}_{2} \rightarrow \mathrm{SnCl}_{4}+2 \mathrm{HI}
$$

Q. 5 [3]
$\mu=1.73$ BM corresponds to 1 unpaired electron which is possible when Ti is in Ti^{3+} state ($3 \mathrm{~d}^{1}$)
3
Q. 6 [0]
sp^{3} hybridisation

Q. 7 [6]

Q. 8 [8]

Osmium forms an oxide, OsO_{4}
Q. $9 \quad$ [2]
(A) is $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$
$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \underset{\text { Black }}{\mathrm{PbS}+2 \mathrm{CH}_{3} \mathrm{COOH}}$
$\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+2 \mathrm{HCl} \rightarrow \underset{\substack{\text { Sololble in } \\ \text { hot water }}}{\mathrm{PbCl}_{2}+2 \mathrm{CH}_{3} \mathrm{COOH}}$

$$
\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \rightarrow \mathrm{PbO}+\mathrm{CO}_{2}+\mathrm{CH}_{2} \mathrm{COCH}_{3}
$$

Q. 10 [4]

$$
\mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{498 \times 10^{-9}}=3.99 \times 10^{-19} \mathrm{~J}
$$

Q. 11 [3]

$\mathrm{Sc} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{1}, 4 \mathrm{~s}^{2}$
$\mathrm{Cr} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{1}$
$\mathrm{Cu} \rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10}, 4 \mathrm{~s}^{1}$
Q. 12 [4]
$\mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}$
Q. 13 [2]

For 4.90 BM magnetic moments total number of unpaired electron in it is 4
\therefore total spin $=\frac{4}{2}=2$

Q. 14 [34]

Ions

no. of unpaired electrons
$\mathrm{Cu}^{2+}, \mathrm{Ti}^{+3} \quad 1$
$\mathrm{Ni}^{2+}, \mathrm{V}^{+3} \quad 2$
$\mathrm{Co}^{2+}, \mathrm{Cr}^{+3} 3$
$\mathrm{Fe}^{2+}, \mathrm{Cr}^{+2}, \mathrm{Mn}^{3+} \quad 4$
$\mathrm{Mn}^{3+}, \mathrm{Fe}^{3+}$

Q. 15 [39]

X is $\underset{26}{\mathrm{Fe}} \quad \mathrm{X}^{+2}=\mathrm{Fe}^{+2} \cdot \mathrm{t}_{2}^{2,2,2} \mathrm{eg}^{0,0}$ low spin

$$
\mathrm{X}^{+3}=\mathrm{Fe}^{+3} 3 \mathrm{~d}^{5} \text { ro } \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{eg}^{1,1} \text { high spin }
$$

$$
a+b+2 c=25+4+2 \times 5=39
$$

but free state $\mathrm{X}^{+2}=\mathrm{Fe}^{+2} \equiv 3 \mathrm{~d}^{6}$
(4 unpaired)
$\mathrm{X}^{+3}=\mathrm{Fe}^{+3}=3 \mathrm{~d}^{5}(5$ unpaired $)$
Q. 16 [6]
$\mathrm{FeC}_{2} \mathrm{O}_{4} \xrightarrow{\Delta} \mathrm{FeO}+\mathrm{CO}+\mathrm{CO}_{2}$
Number of diamagnetic products $=2\left(\mathrm{CO} \& \mathrm{CO}_{2}\right)=\mathrm{x}$; $\left(\mathrm{CO} \& \mathrm{CO}_{2}\right)$ and Number of unpaired electrons in paramagnetic products $\mathrm{FeO}=4\left(3 \mathrm{~d}^{6}\right)=\mathrm{y} ;\left(3 \mathrm{~d}^{6}\right)$
(i) (ii) (iii) (iv)
$\mathrm{AgCl}+$ aq. $\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$
$\mathrm{AgCl}+\mathrm{KCN} \longrightarrow \mathrm{K}^{+}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
$\mathrm{AgCl}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (excess) $\longrightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
$\mathrm{AgCl}+$ conc. $\mathrm{HCl} \longrightarrow\left[\mathrm{AgCl}_{2}\right]^{-}$
$\mathrm{AgCl}+$ aq. $\mathrm{NaOH} \longrightarrow \mathrm{Ag}_{2} \mathrm{O} \downarrow$

Q. 18 [4]

Q. 19 [8]

1. $\mathrm{FeSO}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2}$ $\mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Mohr salt)
2. Green vitriol is $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ \& its anhydrous form $\left(\mathrm{FeSO}_{4}\right)$ is white.
3. $2 \stackrel{(+2)}{\mathrm{FeSO}_{4}} \xrightarrow{(+6)} \stackrel{(+3)}{\mathrm{Fe}_{2} \mathrm{O}_{3}}+\stackrel{(+4)}{\mathrm{SO}_{4}}+\mathrm{SO}_{3}$ (Redox)
4. Fact (Fenton's reagent $=\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$)
5. $\underset{(\mathrm{aq})}{\mathrm{FeSO}_{4}}+\underset{(\mathrm{aq})}{6 \mathrm{KCN}} \longrightarrow \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
6. White vitriol is $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ \& Blue vitriol is $\mathrm{CuSO}_{4} .5$
$\mathrm{H}_{2} \mathrm{O}$
7. Due to its oxidation to Fe^{3+}.
8. $\mathrm{Fe}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}^{+}$(acidic solution)
9. Only SO_{2} can turn acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution green.

Q. 20 [3]

$\mathrm{FeCr}_{2} \mathrm{O}_{4} \xrightarrow[\text { Fuse }]{\mathrm{Na}_{2} \mathrm{O}_{2}}\left\{\mathrm{NaFeO}_{2}+\mathrm{Na}_{2} \mathrm{CrO}_{4}\right\} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\text { Boil }}\left(\mathrm{Na}_{2} \mathrm{CrO}_{4}\right)$
aq. $\xrightarrow{\text { excess } \mathrm{H}^{+}} \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(B)
(Yellow)
(Orange)

$$
\downarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

$$
\mathrm{Cr}^{3+} \stackrel{\text { warm H}}{ } \mathrm{O}_{2} \mathrm{CrO}_{5}
$$

(H)
$\begin{array}{ll}\text { (H) } & \text { (G) } \\ \text { (Yellow) } & \text { (green) }\end{array}$
(F)
(green)
(E) (green)
(D)
(Violet)
Q. 21 [12]
$\mathrm{KMnO}_{4} \xrightarrow[\text { R.A. }]{\mathrm{H}^{+}} \mathrm{Mn}^{2+} \quad \mathrm{x}=2$
$\mathrm{KMnO}_{4} \xrightarrow[\text { R.A. }]{\mathrm{OH}^{-}} \mathrm{Mn}^{4+} \quad \mathrm{y}=4$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CrO}_{4}^{2-} \quad \mathrm{z}=6$
Q. 22 [15]

Outer electronic configuration of Lu is $4 \mathrm{f}^{145} \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
\therefore No. of electrons $=15$
Q. 23 [11]

KVPY

PREVIOUS YEAR'S

Q. 1 (D)
 Q. 2 (B)
 Fact

Q. 3 (A)
$\mathrm{MnO}_{2}+\mathrm{KO}_{2} \xrightarrow{\text { Oxidized }}$ In Air dark green compound
(X) $\mathrm{MnO}_{4}^{-2} \& \mathrm{~K}_{2} \mathrm{MnO}_{4}$

Disproportionation \downarrow
Purple colour $(\mathrm{Y})+\mathrm{Mn}_{\mathrm{O}}^{\mathrm{O}}{ }_{2}^{+4}$

$$
\begin{aligned}
& \stackrel{\mathrm{KMnO}_{4}}{(\mathrm{X}) \rightarrow \mathrm{K}_{2} \mathrm{MnO}_{4}} \\
& (\mathrm{Y}) \rightarrow \mathrm{KMnO}_{4}
\end{aligned}
$$

Q. 4 (C)
$4 \mathrm{NaCl}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 4 \mathrm{NaHSO}_{4}+2 \mathrm{KHSO}_{4}$ $+2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{X})+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{Y})+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{X}=\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$\mathrm{Y}=\mathrm{Na}_{2} \mathrm{CrO}_{4}$
Q. 5 (C)
$\mathrm{KI}+2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KIO}_{3}+2 \mathrm{MnO}_{2}+2 \mathrm{KOH}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (6)
$\mathrm{MnOH}_{4}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \xrightarrow{\mathrm{OH}^{-}} \mathrm{MnO}_{2}+\mathrm{SO}_{4}^{2-}$
Oxidation state of ' S^{\prime} in SO_{4}^{2-} is 6
Q. 2 (1)

$$
\begin{aligned}
& \mathrm{Cr}^{+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} \\
& \mathrm{Mn}^{2+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5}
\end{aligned}
$$

Q. 3 (1)
Q. 4 (2)

Yb shows $+2 \&+3$ only
Q. 5 (1)
Q. 6 (4)

Size of ${ }_{97} \mathrm{Bk}^{3+}$ ion is less than that of ${ }_{93} \mathrm{~Np}^{3+}$ due to actinoid contraction.
As we know that in a period from left to right ionic radius decreases and in actinide series it is due to actinoid contraction.
Q. 7 (4)
Q. $8 \quad$ (49)

Number of unpaired $\mathrm{e}^{-}=4$
$\mu=\sqrt{4(4+2)}$ B.M.
$\mu=\sqrt{24}$ B.M.
$\mu=4.89$ B.M.
$\mu=48.9 \cdot 10^{-1}$ B.M.
Nearest integer value will be 49 .
Q. 9 (1)
$2 \mathrm{KMnO}_{4} \xrightarrow{573 \mathrm{~K}} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
Potassium Potassium
permanganate manganate

Statement-I is correct.
Statement-II is incorrect.
$\mathbf{Q . 1 0} \xrightarrow[\text { (Unstable) }]{\text { (1) }} \underset{\text { (Stable) }}{2 \mathrm{FeI}_{3}} \underset{2}{2 \mathrm{FeI}_{2}}+\mathrm{I}_{2}$
Due to strong reducing nature of I^{-} $2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
remaining halides of $\mathrm{Fe}^{2+} \& \mathrm{Fe}^{3+}$ are stable.
Q. 11 (3)

Urea - HCHO resin is used in manufacture of wood laminates.

Q. 12 (16)

Writting the half reaction oxidation half reaction
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
balancing oxygen
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
balancing Hydrogen
$8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
balancing charge
$5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Reduction half
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}$
Balancing carbon
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Balancing charge
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$
Net equation
$16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
So $\mathrm{c}=16$

Q. 13 (1)

Electronic configuration of divalent metal ion having atomic number 25 is

$$
\begin{aligned}
& \begin{array}{lllll}
1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{6}
\end{array} \quad 3 d^{5}
\end{aligned}
$$

> Total number of unpaired electrons $=5$
> $\mu($ Magnetic moment $)=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}$
> where $\mathrm{n}=$ number of unpaired e^{-}
> $\therefore \mu=\sqrt{5(5 \quad 2)}=\sqrt{35} \mathrm{BM}=5.92 \mathrm{BM}$

Q. 14 (2)

Mn3O4 shows magnetic properties.
Q. 15 (2)
Q. 16 (1)
Q. 17 (2)
Q. 18 (3)
Q. 19 (1)
Q. 20 (3)
Q. 21 (2)
Q. 22 (5)
Q. 23 (4)
Q. 24 (4)
Q. 25 (3)
Q. 26 (2)
Q. 27 (2)
Q. 28 (4)
Q. 29 (4)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A, C, D)/(A, D)

In acidic medium,
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad$ (v.f. $=5$)
In neutral / faintly alkaline medium,
$\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \quad$ (v.f. $=3$)
In strongly alkaline medium,

$$
\left.\mathrm{MnO}_{4}^{-}+\mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{4}^{2-} \quad \text { (v.f. }=1\right)
$$

Q. 2 (A)

CuSO_{4} will be absorbing orange-red colour \& hence will be of blue colour.
Q. 3 (ACD)
$\mathrm{AgNO}_{2}+\mathrm{HCl} \longrightarrow \mathrm{AgCl} \downarrow$
$\mathrm{AgNO}_{3}+\mathrm{HBr} \longrightarrow \mathrm{AgBr} \downarrow$
$\mathrm{AgNO}_{3}+\mathrm{HI} \longrightarrow \mathrm{AgI} \downarrow$
All these precipitates will get dissolved in hypo forming complex $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
Q. 4 [7]
I^{-}to I_{2} oxidation can be done by acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, $\mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+$ $\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI} \downarrow+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
$2 \mathrm{KI}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}$
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{KI}+\mathrm{O}_{3} \longrightarrow 2 \mathrm{KOH}+\mathrm{O}_{2}+\mathrm{I}_{2}$
$\mathrm{FeCl}_{3}+2 \mathrm{KI} \longrightarrow 2 \mathrm{KCl}+\mathrm{FeCl}_{2}+\mathrm{I}_{2}$
$\mathrm{HNO}_{3}+\mathrm{KI} \longrightarrow \mathrm{KNO}_{3}+\mathrm{I}_{2}+\mathrm{NO} \uparrow$
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{KI} \longrightarrow$ no reaction.
Note: $\mathrm{In}_{2} \mathrm{O}_{2} \& \mathrm{O}_{3}$, I^{-}to I_{2} oxidation will occur initially.
Q. 5 (ABC)
$\mathrm{Cr}^{2+}+\mathrm{Mn}^{3+} \rightleftharpoons \mathrm{Cr}^{3+}+\mathrm{Mn}^{2+}$
Cr^{2+} is a reducing agent Mn^{3+} is an oxidising agent both $\mathrm{Cr}^{2+} \& \mathrm{Mn}^{3+}$ exhibit d^{4} electronic configuration.

Q. 6 (CD)

In Basic medium, Fe^{3+} will be precipitated as $\mathrm{Fe}(\mathrm{OH})_{3}$.
Q. 7 (A)
$X \longrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-} \quad \mathrm{Y} \longrightarrow \mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (white)
$Z \longrightarrow A g_{2} S$ (Black)
Q. 8 [1]

$$
* \mathrm{H} \text {-atom }=\frac{1}{1 \mathrm{~s}^{1}}
$$

Paramagnetic

* $\mathrm{O}_{2}^{-}=($superoxide $)=$One unpaired electrons in π^{*} M.O.

Paramagnetic

* S_{2} (in vapour phase) $=$ same as O_{2}, two unpaired $\mathrm{e}^{-} \mathrm{s}$ are present in π^{*} M.O.

Paramagnetic

* $\mathrm{Mn}_{3} \mathrm{O}_{4}=2 \stackrel{+2}{\mathrm{MnO}} \cdot \stackrel{+4}{\mathrm{MnO}_{2}}$
* $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{FeCl}_{4}\right]=\mathrm{Fe}^{+2}=3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$

Paramagnetic

Paramagnetic sp^{3} - hybridisation
$\begin{aligned} *\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{NiCl}_{4}\right]= & \mathrm{Ni}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \\ & \mathrm{Ni}^{+2}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}\end{aligned}$

Paramagnetic sp^{3} - hybridisation

Q. 9 (B,C,D)
$\mathrm{Zn}+2 \mathrm{H}_{2} \mathrm{SO}_{4}$ (HOT and conc.)

$$
\begin{equation*}
\rightarrow \mathrm{ZnSO}_{4}+\mathrm{SO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \tag{X}
\end{equation*}
$$

(G) (R)

$$
\begin{equation*}
\mathrm{Zn}+2 \mathrm{NaOH} \text { (conc.) } \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \uparrow \tag{T}
\end{equation*}
$$

(Q)
$\mathrm{ZnSO}_{4}+\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{NH}_{4} \mathrm{OH}$

$$
\rightarrow \mathrm{ZnS} \uparrow+2 \mathrm{H}_{2} \mathrm{O}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
$$

(Z) (X) (Y)
Q. 10 [6]
$\mathrm{KMnO}_{4}+\mathrm{KI} \rightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}$
Eq of $\mathrm{KMnO}_{4}=\mathrm{Eq}$ of I_{2}
$4 \times 3=n \times 2$
$\mathrm{n}=6$
Q. 11 [4]

Here the structure of CrO_{5} is :

Here, single bonded O -atoms with Cr is $=04$

Co-Ordination Compounds

EXERCISES

ELEMENTARY

Q. 1 (4)

Pyridine is monodestate ligand, so it is not chelating ligand.
Q. 2 (4)

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \text { Complex salt }
$$

Q. 3 (2)

$$
\begin{aligned}
\mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \rightleftharpoons & 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S} \\
& (\text { Sodium dicyno argentate })
\end{aligned}
$$

$2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}+2 \mathrm{Ag} \downarrow\right.$
(Sodium Tetracyno Zincate
(ppt))
Q. 4 (4)

In $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$, the species retains its identity in solid as well as in solution state.
Q. 5 (2)

The complexes can be written as follows
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl} 2\right] \mathrm{Cl}$
(A)
(B)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

Hence, number of primary valencies are 3,2 and 1 respectively.

Q. 6 (2)

$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ because in it CN^{-}donats a lone pair of electron.

Q. 7 (2)

 Al has 6 co-ordination number.Q. 8 (2)
Q. 9 (4)
Q. 10 (2)

Negative ligands end in - O eg. $\mathrm{SO}_{4}{ }^{2-}$ (sulphato).
Q. 11 (2)
Q. 12 (4)

Alum acts as coagulating agent.

Q. 13 (2)

As there is no direct bonding between the metal atom and the carbon atom.

Q. 14 (2)

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Li}$ is an organo-metallic compound.
Q. 15 (3)
$\mathrm{x}+5 \times 0-1-3=0$
$\mathrm{x}=+4$
Q. 16 (4)

Q. 17 (2)

EAN rule \Rightarrow violates.
Q. 18 (2)
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2} \rightleftharpoons\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+}+2 \mathrm{Cl}^{-}$
Q. 19 (2)

$$
\begin{aligned}
& {\left[\underset{\mathrm{x}}{\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.} \mathrm{Cl}_{3}\right]^{-}} \\
& \mathrm{x}+0+3 \mathrm{x}(-1)=-1, \mathrm{x}-3=-1, \mathrm{x}=+2
\end{aligned}
$$

Q. 20 (1)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$
$\mathrm{x}+6(0)=+3 \Rightarrow \mathrm{x}=+3$
Q. 21 (2)
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{\mathrm{x}},(\mathrm{Ni}=+2)(\mathrm{CN}=-1)$
$\mathrm{x}=2+4(-1) \Rightarrow \mathrm{x}=-2$
Q. 22 (4)
Q. 23 (1)
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]\left[\mathrm{PtCl}_{4}\right]$
Tetraammine dichloro platinum (IV) tetrachloroplatinate (II).
Q. 24 (3)
Q. 25 (1)
Q. 26 (1)

In the compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$, the oxidation state of cobalt is +3 and here $5 \mathrm{NH}_{3}$ ligand, a NO_{2} ligand are attached to the central atom. therefore its name is pentaamminecobalt (III) chloride.
Q. 27 (3)
I. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$
II. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]$
III. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{CuCl}_{4}\right]$
IV. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]$
Q. 28 (1)
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Q. 29 (2)

In $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}, \mathrm{Ag}^{+}$contains d^{10} configuration. All others contain unpaired electrons.
Q. 30 (4)

Generally strong field ligand \Rightarrow Isomer orbital
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \rightarrow \mathrm{Ni}^{2+} \rightarrow 3 \mathrm{~d}^{8} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$.
Q. 31 (4)
$\left[\mathrm{PtCl}_{4}\right]^{2-} \rightarrow \mathrm{dsp}^{2} \Rightarrow$ square planer.
Q. 32 (3)
W.F. \rightarrow outer orbital complex.

Q. 33 (1)
Q. 34 (1)
Q. 35 (2)

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
(2)
$\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$. It contains two donor atoms i.e. nitrogen. So it is a bidentate ligand.
Q. 2 (3)

It attaches to the central metal ion through four carboxylate group oxygen atoms and the two amine nitrogens.

Q. 3 (1)
$\mathrm{Fe}(\mathrm{CN})_{2}+4 \mathrm{KCN} \longrightarrow \mathrm{Fe}(\mathrm{CN})_{2} \cdot 4 \mathrm{KCN} \rightleftharpoons 4 \mathrm{~K}^{+}$ $+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
It gives test of K^{+}but does not give test of Fe^{2+}. These type of salts which do not lose their identity when dissolved in water are called complexes.
Q. 4 (2)

All ligands are Lewis bases as they donate lone pair of electrons to the metal ion to form coordinate covalent bonds.
Q. 5 (2)
(1) Let x be the oxidation state of Mo in $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{--}$. So $2 \mathrm{x}-8=-2$ or $\mathrm{x}=+3$.
Q. 6 (4)
$\mathrm{H}_{2} \mathrm{O}$ is neutral, chromium oxidation state i.e. charge is +3 and oxalato anion has -2 charge; due to two $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ it will be -4 and net charge on the complex is algebraic sum of the charge on metal ion and ligands present in the coordination sphere. So $3+2 \times(-2)=$ -1 . So the formulae of complex is $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}$
Q. 7 (2)

Higher the value of K higher will be strength of ligand \& more will be thermodynamic stability of complex produced.
Q. 8 (1)

Monodentate rest are bidentate legands.
Q. 9 (3)

Ethylene diamine triacetate ion
Q. $10 \quad$ (2) $\mathrm{NH}_{4}{ }^{+}$has no lone pair, rest has lone pair.
Q. 11 (2)

Refrence theory

Q. 12 (4) $\mathrm{Ca}^{2+} \& \mathrm{Mg}^{2+}$ ions forms complex with $\mathrm{Na}_{2} \mathrm{H}_{2}$ EDTA.
Q. 13 (4)

Q. 14 (2)

$\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	$\sigma-$ complex
$\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$	$\pi-$ complex
$\mathrm{Zn}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$\sigma-$ complex
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$	$\sigma-$ complex

Q. 15 (2)

$\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ TBP
CO is strong field ligand
$\mathrm{Fe}-3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
Pairing

Q. 16 (3)

Zeise's salt
$\mathrm{K}\left[\mathrm{Pt}^{\mathrm{II}} \mathrm{Cl}_{3}\left(\pi-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$

$$
x_{3} \neq x_{1}=x_{2}
$$

Q. 24

EAN $=27+1+4 \times 2=36$

Q. 25 (3)
x is number of lone pairs of electrons donated to central metal ion.

So, $26+2 x=36 \quad$ or $\quad x=\frac{10}{2}=5$
Q. 26 (2)
$\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$; Platinum is in +4 oxidation state. Atomic number of $\mathrm{Pt}=78$.

So EAN Pt(IV) $=78-4+12=86$
Q. 27 (3)
$\left[\mathrm{Fe}(\mathrm{CO}) \mathrm{x}_{\mathrm{x}}\right]^{0}$
EAN $=26+2 \mathrm{x}=36$
$\mathrm{x}=5$

Q. 28 (1)

Conductivity α number of ions in the solution.
(1) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \stackrel{\mathrm{aq}}{\rightleftharpoons} 4 \mathrm{~K}^{+}(\mathrm{aq})+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}(\mathrm{aq})$

4:1 electrolyte.

It contains maximum number of ions i.e. 5.
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \stackrel{\mathrm{aq} .}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}$ (aq)

$$
1: 3 \text { electrolyte. }
$$

(3)
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}$ (aq)

$$
1: 2 \text { electrolyte. }
$$

(4) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \stackrel{\mathrm{aq} .}{\rightleftharpoons}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right](\mathrm{aq})$ (neutral).

Q. 29 (1)

Molar conductance depends not only on the number of ions in aqueous solution but also on the electrical charges on the ions.
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}$
(aq). It has 4 ions and six electrical charges.
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \stackrel{\text { aq. }}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ (aq) (neutral)
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \stackrel{\text { aq. }}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+(\mathrm{aq})+$
$\mathrm{Cl}^{-}(\mathrm{aq})$. It has 2 ions and two electrical charges.
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}(\mathrm{aq})+$
$2 \mathrm{Cl}^{-}(\mathrm{aq})$. It has 3 ions and four electrical charges.
Q. 30 (2)
$\mathrm{PtCl}_{4} \cdot 2 \mathrm{KCl} \equiv \mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right] \stackrel{\text { aq. }}{\rightleftharpoons} 2 \mathrm{~K}^{+}+\left[\mathrm{PtCl}_{6}\right]^{2-}$.
So, it has three ions per formula unit. The Cl^{-}is present in coordination sphere so it will not give white precipitate with silver nitrate solution. So in the compound the coordination number of platinum is 6 .
Q. 31 (2)

The counter ion present out side the coordination sphere can give test. Here Cl^{-}is present in the ionization sphere as counter ion so it will give the test.
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \downarrow$ (white).
Q. 32 (4)
(4) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}(\mathrm{aq})$.
Cl^{-}present in ionisation sphere will give precipitate with AgNO_{3}.
$3 \mathrm{Cl}^{-}+3 \mathrm{Ag}^{+} \longrightarrow 3 \mathrm{AgCl}$
So, one mole of complex will give three moles of AgCl precipitate.
Q. 33 (4)
$\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3} \equiv\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}$
$(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$.
$2 \mathrm{Ag}^{+}+2 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{AgCl} \downarrow$ (white)
Q. 34 (4)
$\mathrm{K}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ Let $\mathrm{O} . \mathrm{S}$ of $\mathrm{Ni}=\mathrm{x}$
$4+x-4=0$
$\mathrm{x}=0$
(1) Co^{3+}
(2) Fe^{2+}
(3) Co^{-1}
Q. 35 (4)
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl} \stackrel{\mathrm{aq}}{\rightleftharpoons}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Out of four Cl^{-}only one Cl^{-}(i.e. 25%) present in ionization sphere will give preciptate.

$$
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \downarrow \text { (white). }
$$

Q. 36 (3)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2} \stackrel{\text { aq. }}{\rightleftharpoons}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}(\mathrm{aq})$ $+2 \mathrm{Cl}^{-}(\mathrm{aq})($ no. of ions $=3)$

$$
2 \mathrm{Ag}^{+}+2 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{AgCl} \downarrow \text { (white). }
$$

Q. 37 (3)

Anhydrous binary compound will have all water molecules in coordination sphere so its formula will be $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$. Two Cl^{-}will have dual behaviour i.e. they will act as primary valency as well as the secondary valency and third Cl^{-}will satisfy only primary valency.
Q. 38 (3)

Coordination no. of $\mathrm{Cr}=6$
$1 / 3 \times 3=1$ Chloride ion is outside the coordination sphere.
Q. 39 (2)
$\mathrm{K}_{2}{ }^{+4}\left[\mathrm{PtCl}_{6}\right]$
At No. $\mathrm{Pt}=78$
EAN $=78-4+6 \times 2=86$
Q. 40 (2)

Coordination no. of $\mathrm{Co}=6$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}$
eq. of complex $=$ eq AgCl
$\frac{0.1 \times 100}{1000} \times 2=$ Mol. $\mathrm{AgCl} \times 1$
$0.02=$ mol. AgCl
Q. 41 (1)
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]$ is neutral complex
Q. 42 (2)
(I) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3} \rightarrow 4$ ions
(II) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \rightarrow 3$ ions
(III) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right] \mathrm{Cl} \rightarrow 2$ ions
(IV) $\left[\mathrm{PtCl}_{4}\left(\mathrm{NH}_{3}\right)_{2}\right] \rightarrow$ no ions
Q. 43 (4)
eq. of complex $=$ eq. of AgCl
$\frac{10 \times 1}{1000} \times n \quad \frac{4.305}{108+35.5} \times 1$
$\mathrm{n}=3$
So three ions out side the coordination sphere.
Q. 44 (3)

$$
\begin{array}{ll}
\mathrm{K}_{2}\left[\mathrm{Ni}^{2+}(\mathrm{CN})_{4}\right] & \text { EAN }=28-2+4 \times 2= \\
34 \\
{\left[\mathrm{Cu}^{2+}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}} & \text { EAN }=29-2+8=35 \\
\mathrm{~K}_{2}\left[\mathrm{PP}^{4+} \mathrm{Cl}_{6}\right] & \text { EAN }=78-4+6 \times 2= \\
86 &
\end{array}
$$

Q. 45 (4)

$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$	$\mathrm{EAN}=35$
$\mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$	$\mathrm{EAN}=35$
$\mathrm{~K}_{4}\left[\mathrm{Fe}^{2+}(\mathrm{CN})_{6}\right]$	$\mathrm{EAN}=36$
$\left[\mathrm{Co}^{3+}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$	$\mathrm{EAN}=36$
$\mathrm{~K}_{3}\left[\mathrm{Cr}^{3+}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$	$\mathrm{EAN}=33$
$\left.\mathrm{Cr}^{3+}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}\left(\mathrm{NO}_{2}\right)_{2}$	$\mathrm{EAN}=33$

Q. 46 (3)

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] & \text { EAN }=36 \\
\mathrm{~B} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} & \text { EAN }=36 \\
\mathrm{C} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} & \text { EAN }=35 \\
\mathrm{D} \rightarrow \mathrm{~K}_{3}\left[\mathrm{CoCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] & \text { EAN }=36
\end{array}
$$

Q. 47 (3)

It is a chelate complex having three five -membered rings. It attains extra stability through chelation.

Q. 48 (2)

CaCl_{2} has 3 ion
$\mathrm{CoCl}_{3} 5 \mathrm{NH}_{3}=\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
also has 3 - ions
In complex assume C. N. $=6$
Q. 49 (3)

Transition metal \& ligand present in the complex does not furnishes their analytical test.
Q. 50 (4)

Assuming complex follows EAN rule
EAN of $\mathrm{Co}=27+4 \times 2+\mathrm{x}=36$
$\mathrm{x}=1$
EAN of $\mathrm{Fe}=26-2+2 \mathrm{x}+6=36$
$\mathrm{x}=3$
Q. 51 (1)
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{C} \ell\right] \mathrm{so}_{4}$ will form
BaSO_{4} (white ppt) on treatment with BaCl_{2}.
O. N . of $\mathrm{Al}=+3$
O. N . of $\mathrm{B}=+3$
$\left[\mathrm{BF}_{4}\right]^{-}$
$\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{3}\right)_{3}\right]^{3-}$
Q. 54 (4)

As there are six σ-bonds between metal atom/ion and ligands, the coordination number of $\mathrm{Pt}(\mathrm{IV})$ in this complex is six.
Q. 55 (2)

Let x be the oxidation state of copper in $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$. So, $x+4(-1)=-3$ or $x=1$. In (1) and (3) the oxidation state of copper is +2 .
Q. 56 (1)

Let x be the oxidation state of cobalt in $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]^{+}$. So, $x+2(-1)+0=+1$ or $x=+3$.
As there are six σ-bonds between cobalt and ligands, it coordination number is 6 (here 'en' is a bidentate ligand).
Q. 57 (2)
$\left[\mathrm{Ni}^{0}(\mathrm{CO})_{4}\right]$
$\left[\mathrm{Cr}^{3+}\left(\mathrm{NH}_{3}\right)_{6}\right]_{2}\left[\mathrm{Ni}^{4+} \mathrm{F}_{6}\right]_{3}$
$\left[\mathrm{Ni}^{2+}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{B}^{+3} \mathrm{~F}_{4}\right]_{2}$
$\mathrm{K}_{4}\left[\mathrm{Ni}^{+2}(\mathrm{CN})_{6}\right]$

Q. 58 (1)

Correct name is dichloridodimethylglyoximatecobalt
(II)
Q. 59 (3)
(1) Coordination number of platinum is generally six when its oxidation state is (IV). So it is incorrect name.
(2) With type of ligand and +4 oxidation state of platinum, the complex should be cationic not anionic. So it is also incorrect name.
not anion but IUPAC name is given as anion.
(3) For coordination number six, the oxidation state of Pt is +IV. So the probable formulae of the complex may be $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})(\mathrm{SCN})_{2}\right]^{2+}$. So its correct IUPAC name is Diammineethylenediaminedithiocyanato-Splatinum (IV).
(4) With two NH_{3}, two en and two SCN^{-}ligands, the coordination number of Pt becomes eight, which is incorrect according to the question.

Q. 60 (1)

Compound $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{F}_{4}^{-4} \mathrm{O}^{-2}\right](\mathrm{CN}=5)$ is a neutral molecule so there should not be potassium cation.
Q. 61 (4)
(i) The central atom, Co is placed first.
(ii) The ligands are then placed in alphabetical order. (iii) The formula for the entire coordination entity, whether charged or not, is enclosed in square brackets.

Q. 62 (4)

Cation is named first followed by anion. In coordination sphere the ligands are named alphabetically followed by name of metal ion and then its oxidation state in Roman numeral.
In $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right]^{+} \mathrm{Cl}^{-}$, cobalt is in +3 oxidation state and the complex is cationic. ONO ligand attach to metal ion through O atom ; so - O - is used while naming as nitrito before the name of metal ion. So IUPAC name given in option (4) is correct.

Q. 63 (3)

Metal, Co is placed first followed by ligands in alphabetical order as ammine $>$ aqua $>$ chlorido i.e. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right] \mathrm{Cl}_{2}$.
Q. 64 (1)
$\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$

Optically active (cis)
(trans)

Mirror image
Q. 65 (3)

$+\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$ (total six electric charge)
3 : 1 electrolyte.
Q. 66 (2)

Dimethyl glyoximato ligand.
Q. 67 (2)

$$
\begin{array}{ll}
\text { O. } \mathrm{N} \text { of } \mathrm{Br}=\mathrm{x} & \Rightarrow+2+2 \mathrm{x}-8=0 \\
\Rightarrow \mathrm{x}=+3
\end{array}
$$

Q. 68 (3)
Q. 69 (2)

$$
\begin{array}{ll}
\text { Let the } \mathrm{O} . \mathrm{N} . \text { of } \mathrm{Fe}=\mathrm{x} & \Rightarrow 4+\mathrm{x}+(-1) \times 5+ \\
(-1)=0 & \Rightarrow \mathrm{x}=+2
\end{array}
$$

Q. 70 (2)

Q. 71 (3)

Q. 72 (4)
${ }^{-}$OCN is ambident ligand $\&$ it shows linkage isomerism.
Q. 73 (3)
$\left[\mathrm{PtBrCl} \mathrm{NH}_{3} \mathrm{Py}\right] \mathrm{Pt}^{2+}$ is dsp ${ }^{2}$ hybridised $\&$ hence geometry is square planner \& sq. planner complex with four different ligands shows geometrical isomerism.
Q. 74 (3)

$$
\begin{array}{ll}
{\left[\mathrm{Cu}^{2+}\left(\mathrm{NH}_{3}\right)_{4}\right]} & {\left[\mathrm{PtCl}_{4}\right]} \\
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}} & {\left[\mathrm{PtCl}_{3} \mathrm{NH}_{3}\right]^{-}} \\
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{0}} & {\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{0}[\text { it is not }]} \\
{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]^{-}} & {\left[\mathrm{PtCl}\left(\mathrm{NH}_{3}\right)_{3}\right]^{+}} \\
{\left[\mathrm{CuCl} 4_{4}\right]^{-}} & {\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}
\end{array}
$$

Q. 80 (2)
$\mathrm{NO}_{2}{ }^{-}$is an ambidentate ligand and thus it can linkage to metal ion through O as well as through N . Hence show linkage isomerism.
Q. 81 (2)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)_{3}\right]$ exists in following to isomeric forms.

Q. 82 (4)

Geometrical isomerism arises in heteroleptic complexes due to different possible geometric arrangements of the ligands. Geometrical isomerism is common among coordination compounds with coordination numbers 4 having square planar geometry and 6 having octahedral geometry.
Q. 83 (3)

Q. 84 (3)
(1) Linear geometry
(2) $\mathrm{Ma}_{4} \mathrm{~b}$ has one form $\mathrm{Ma}_{4} \mathrm{~b}$
(3)

cis -
trans -
(4) $\mathrm{Ma}_{3} \mathrm{~b}$ and Ma_{4} both have one form each.
Q. 85 (2)

(I) $\mathrm{NH}_{3} \mathrm{~T} \mathrm{NO}_{2}$, (II) $\mathrm{NH}_{3} \mathrm{~T} \mathrm{NH}_{2} \mathrm{OH}$,
(III) $\mathrm{NH}_{3} \mathrm{~T}$ py.
Q. 86 (4)

Q. 87 (1)

Mirror

No super impossable mirror image
Q. 88 (2)

trans

Q. 89 (4)

Ambident ligand
Since both cation \& anion constitute coordination sphere so it exhibit coordination isomerism and contains ambident ligand so, it shows linkage isomerism.
Q. 90 (4)

$\left[\mathrm{Ag}^{+} \mathrm{F}_{4}\right]^{-} \mathrm{sp}^{3}$	sp^{3}
T.H.	
$\left[\mathrm{Hg}^{2+} \mathrm{T}_{4}\right]^{2-}$	sp^{3}
T.H.	
$\left[\mathrm{Ni}^{2+} \mathrm{Cl}_{4}\right]^{2-}$	sp^{3}
$\mathrm{~T} . \mathrm{H} .($ weak field ligand $)$	
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$	dsp^{2}

Square planer
Q. 91 (1)

Order of strength of lighand en $>\mathrm{H}_{2} \mathrm{O}>\mathrm{Br}$
\therefore Order of Δ_{0} is $\Delta_{\text {en }}>\Delta_{\mathrm{H}_{2} \mathrm{O}}>\Delta_{\mathrm{Br}}$
$\Delta=\frac{h c}{\lambda_{\text {absorbed }}}$
Q. 92 (1)
$\mathrm{H}_{2} \mathrm{O}$ is weak field ligand
$\mathrm{Fe}^{2+} 3 \mathrm{~d}^{6}$
$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
$\overline{4}$ -
$3 \mathrm{~d} \quad 4 \mathrm{~s}$
4 unpaired
electron

$$
--\overline{s p^{3} \mathrm{~d}^{2}}---
$$

Q. 93 (1)
exception
Q. 94 (1)
$5 d^{8}$ configuration have higher CFSE and the complex is thus square planar and diamagnetic.

	5d			6 s		6 p
$\mathrm{Pt}^{2+},[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{8}$		1611	111			
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2-}$	16	$11 / 16$	117:	4		\%

Q. 95 (3)

being symmetrical molecule $\mu=0$.
As it is symmetrical molecule, therefore, its dipole moment (μ) is zero.
Q. 96 (4)

In complex nickel is in zero oxidation state. The CO is strong field ligand and therefore compels for the pairing of electrons. The hybridisation scheme is as shown in figure.

$$
\mathrm{sp}^{3} \text { hybrid orbitals }
$$

Four pairs of electrons from four CO.
It is tetrahedral and as all electrons are paired so diamagnetic.
Q. 97 (4)

In d ${ }^{6}$, 'low spin' octahedral complex all electron will be paired because of higher CFSE.
Q. 98 (2)

S_{2} VBT does not give a quantitative interpretation of the thermodynamics stabilities of coordination compounds and (its short coming).
S_{3} is correct statement as $\Delta_{\mathrm{o}} \propto$ strength of ligand and oxidation state of central metal ion.

Q. 99 (3)

Low spin complex utilizes $(n-1)$ d-orbital for hybridisation and thus low spin complex is formed with $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation.
Q. 100 (4)

The complex $\left[\mathrm{FeF}_{6}\right]^{4-}$ is paramagnetic and uses outer orbital (4d) in hybridisation $\left(\mathrm{sp}^{3} \mathrm{~d}^{2}\right)$; it is thus called as outer orbital or high spin or spin free complex. So : $\mathrm{Fe}^{2+},[\mathrm{Ar}] 3 \mathrm{~d}^{6}$

$\left[\mathrm{FeF}_{6}\right]^{4-}$

$\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbitals Six pairs of electrons from six F^{-}ions.

Q. 101 (3)

(3) $\mathrm{Mn}^{2+}, 3 \mathrm{~d}^{5}$ configuration has 5 unpaired electrons. In (4) $\mathrm{Fe}^{2+}\left(3 \mathrm{~d}^{6}\right)$ has no unpaired electrons because of strong field ligand $\left(\mathrm{CN}^{-}\right)$, all electrons are paired. In (1) and (2) $\mathrm{Cu}^{2+}\left(3 \mathrm{~d}^{9}\right)$ has one unpaired electron.

Q. 102 (1)

$\mathrm{Fe}^{3+}, 3 \mathrm{~d}^{5}$ configuration has 5 unpaired electrons because F^{-}is a weak field ligand.
Q. 103 (1)
(1) This may attributes to the following two reasons.
(i) There are only four ligands instead of six, so the ligand field is only two thirds the size ; as the ligand field splitting is also the two thirds the size and (ii) the direction of the orbitals does not concide with the direction of the ligands. This reduces the crystal field splitting by roughly further two third. So $\Delta_{\mathrm{t}}=$ $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9} \Delta_{\mathrm{o}}$.
Q. 104 (3)
(1), (2) and (4) all have tetrahedral geometry except (3) which has square planer geometry.
Q. 105 (4)
$d^{0} \& d^{10}$ system are colourless
Q. 106 (1)
(1) $\left[\mathrm{FeCl}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)\right]^{4-} ; \mathrm{O}_{2}$ is $\mathrm{O}_{2}{ }^{2-} ; \mathrm{CN}^{-}$is strong field ligand, so compels for the pairing of electrons.
$\mathrm{Fe}^{3+} \rightarrow 3 \mathrm{~d}^{5}$;

(2) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$;
CN^{-}is strong field ligand so compels for the pairing of electrons.
$\mathrm{Fe}^{2+} \rightarrow 3 \mathrm{~d}^{6}$:

(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$;
NH_{3} is strong field ligand and $3 \mathrm{~d}^{6}$ configuration has higher CFSE compelling for the pairing of electrons. $\mathrm{Co}^{3+} \rightarrow 3 \mathrm{~d}^{6}$:

(4) $\left[\mathrm{Fe}(\mathrm{CN})_{5}\left(\mathrm{O}_{2}\right)\right]^{5-}$;
O_{2} is $\mathrm{O}_{2}{ }^{2-} ; \mathrm{CN}^{-}$is strong field ligand so compels for the pairing of electrons.
$\mathrm{Fe}^{2+} \rightarrow 3 \mathrm{~d}^{6}:$

Q. 107 (2)
Ag^{+}has $4 \mathrm{~d}^{10}$ configuration and thus all electrons are paired in 4d-orbitals.
Q. 108 (3)
(1)

$4 d^{3}$ contains three unpaired electrons with strong field as well as with weak field ligand.
(2) It is inner orbital complex $\left(\mathrm{d}^{2} \mathrm{sp}^{3}\right)$ and all six electrons are paired as $3 \mathrm{~d}^{6}$ configuration has higher CFSE.

Q. 109 (3)

In complex, $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ nickel is in zero oxidation state. The CO is strong field ligand and, therefore compels for the pairing of electrons. The hybridisation scheme is as shown in figure.

Four pairs of electrons from four CO.
It is tetrahedral and as all electrons are paired so diamagnetic.
In the diamagnetic and square planar complex $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$, the nickel is in +2 oxidation state and the ion has the electronic configuration $3 \mathrm{~d}^{8}$. The hybridisation scheme is as shown in figure.
Ni^{2+}, $[\mathrm{Ar}] 3 \mathrm{~d}^{8}$

$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

In the paramagnetic and tetrahedral complex $\left[\mathrm{NiCl}_{4}\right]^{2-}$, the nickel is in +2 oxidation state and the ion has the electronic configuration $3 \mathrm{~d}^{8}$. The hybridisation scheme is as shown in figure.

Q. 110 (4)
$\left[\mathrm{Co}^{3+}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \quad \mathrm{Co}^{3+} \mathrm{d}^{6}$
$\left[\mathrm{Fe}^{3+}(\mathrm{CN})_{6}\right]^{3-} \quad \mathrm{Fe}^{3+} \mathrm{d}^{5}$
$\left[\mathrm{Cr}^{3+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad \mathrm{Cr}^{3+} \mathrm{d}^{3}$
$\left[\mathrm{Mn}^{7+} \mathrm{O}_{4}\right]^{-} \quad \mathrm{Mn}^{7+} \mathrm{d}^{0}$
Q. 111 (3)
(3) Coordination compounds made up of cationic and anionic coordination entities show coordination isomerism due to the interchange of ligands between the cation and anion entities.
Q. 112 (1)
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \quad\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
O.N. $\mathrm{Ni}=0 \quad$ O.N. $\mathrm{Ni}=+2$
sp^{3} (T.H.)
dsp^{2} (square planer)
$\mu_{\text {spin }}=0$
$\mu_{\text {spin }}=0$
Q. 113 (3)
$d^{0} \& d^{10}$ complex are colourless
Q. 114 (3)

In $\left[\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ complex $\mathrm{PPh}_{3} \& \mathrm{Cl}$ are weak field ligand
so it does not cause pairing.
In $\mathrm{Ni}(\mathrm{CO})_{4}$
Ni $3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
Pairing $3 \mathrm{~d}^{10}$ so
$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow----{ }_{4 \mathrm{~s}} 4 \mathrm{p}$ 4-sp ${ }^{3}$ hybrid orbital
Q. 115 (4)
$\left[\mathrm{Mn}^{+6} \mathrm{O}_{4}\right]^{2-} \mathrm{d}^{3}$ s paramagnetic, contains one unpaired electron.
Q. 116 (3)
${ }^{-} \mathrm{CN}$ is very strong field ligand causes high splitting \& makes the complex thermodynamically more stable
Q. 117 (3)
F^{-}is weak field ligand
$\left[\mathrm{Fe}^{3+} \mathrm{F}_{6}\right]^{3-} \mathrm{Fe}^{3+} 3 \mathrm{~d}^{5}$
$\uparrow \uparrow \uparrow \uparrow \uparrow$
3d - - -
$-\overline{6 \mathrm{sp}^{3} \mathrm{~d}^{2}}$ hybrid orbital
Q. 118 (3)
$\left[\mathrm{Fe}^{0}(\mathrm{CO})_{5}\right]^{0}$
Co is strong field ligand
$\mathrm{Fe} 3 \mathrm{~d}^{8}$
Q. 119 (3)
Cl^{-}weak field ligand (High spin complex)
CN^{-}strong field ligand (Low spin complex)
Br^{-}weak field ligand (High spin complex)
PPh_{3} weak field ligand (High spin complex)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

$$
\mathrm{Pb}^{2+}+\mathrm{CaH}_{2} \mathrm{EDTA} \rightarrow[\mathrm{~Pb}(\text { EDTA })]^{2-}+\mathrm{Ca}^{2+}+\mathrm{H}^{+}
$$

Q. 2 (D)
$\mathrm{Cu}^{2+}+\mathrm{KCN} \rightarrow \mathrm{CuCN}+(\mathrm{CN})_{2}$
\downarrow KCN

$$
\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]
$$

Q. 3 (D)
$\mathrm{K}_{4}\left[\mathrm{Zn}^{\mathrm{II}}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)_{2}\right]^{4-} \xrightarrow{\text { oxidised }}$
$\mathrm{K}_{2}\left[\mathrm{Zn}^{\mathrm{II}}(\mathrm{CN})_{4}\left(\mathrm{O}_{2}\right)_{2}\right]^{2}$.
O_{2}^{-}(has lunpaired electron in antibonding MO) $\xrightarrow{\text { oxidised }} \mathrm{O}_{2}$ (has 2 unpaired electrons in antibonding MO).
So, paramagnetic moment increases.
Q. 4 (B)
$\frac{1}{\text { bond strength }} \alpha$ CO bond length $\alpha \frac{e}{p}$
e- electron
p - ptoron
$\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-} \frac{\mathrm{e}}{\mathrm{p}}=\frac{24}{28}>1$
$\left[\operatorname{Cr}(\mathrm{CO})_{6}\right] \frac{\mathrm{e}}{\mathrm{p}}=\frac{24}{24}=1$
$\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]$
$+\frac{\mathrm{e}}{\mathrm{p}}=\frac{24}{25}<1$
Q. 5 (B)

Using MOT determine bond order of $\mathrm{O}_{2}{ }^{2-}, \& \mathrm{O}_{2}{ }^{-}$ion
Q. 6 (A)

As + ve charge on the central metal atom increases, the less readily the metal can donate electron density into the π^{*} orbitals of CO ligand to weaken the $\mathrm{C}-\mathrm{O}$ bond.
Hence order of $\mathrm{C}-\mathrm{O}$ bond strength is : $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$> $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$.
Q. 7 (B)
(I) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
(II) $\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-}$

Same no. of ions but different magnitude of charge I ${ }^{\text {st }}$ complex, is more electrically conduction than II.
Q. 8 (D)

is strong field ligand and thus compels for the pairing of electrons.

strong field ligand and thus compels for the pairing of electrons.
(B) $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Ba}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{BaSO}_{4} \downarrow$ (white);
$\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Ba}^{2+}(\mathrm{aq}) \longrightarrow$ no visible change.
(C) $\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{AgCl} \downarrow$ (white); Br^{-} $(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{AgBr} \downarrow$ (pale yellow)
Q. 9 (C)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
on electrolysis: At cathode
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{e} \rightarrow \mathrm{Co}+6 \mathrm{NH}_{3}$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
On electrolysis : At cathode
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{e} \rightarrow \mathrm{Cr}+6 \mathrm{NH}_{3}$
Different metal at cathode are obtained
Q. 10 (C)

$$
\begin{aligned}
& \mathrm{Ni}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \\
\therefore \quad & \mathrm{k}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}{\left.\left.\left[\mathrm{Ni}_{3}\right)_{4}\right]^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4+}} \\
\text { But } & \frac{\left[\mathrm{Ni}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]+\left[\mathrm{Ni}^{4}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}=1.6 \times 10^{-6}
\end{aligned}
$$

or $\frac{\mathrm{Ni}^{2+}}{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}} \approx 1.6 \times 10^{-6}$
$\therefore \mathrm{k}=\frac{10^{6}}{1.6 \times(0.5)^{4}}=10^{7}$
Hence instability constant $=10^{-7}$
Q. 11 (D)
$\mathrm{VO}_{2}{ }^{2+}$ let O . N . as V is x
$\mathrm{x}+(-2) \times 2=+2$
$x=+6$ (which is not possible)
as
$\mathrm{V}=3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
so maximum O.N. is +5

Q. 12 (C)

EAN of $\mathrm{Fe}=26+2 \times 2+3 \times 2=36$
EAN of $\mathrm{Co}=27+1+4 \times 2=36$

Q. 13 (C)

$\mathrm{x} / 2 \times 2+27+1=36$
$\mathrm{x}=8$
Q. 14 (C)
Q. 15 (D)

NO is three electron donating ligand
6×2 for $\mathrm{CO}=4 \times 3$ for NO
$=$ total 12 electron for donation
Q. 16 (A)

Brown complex
Let O . N . of Co is x
$0 \times 5+x+(-2)+x+0 \times 5=+4$
$\mathrm{x}=+3$
$\mathrm{Co}^{3+} \mathrm{d}^{6}$ in strong field ligand
$\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$
(d^{6})
μ spin $=0$
In given complex one Co^{3+} losses electron \& form Co^{4+} as nature of ligand remain same \& Co^{4+} gains d^{5} configuration in strong field with 1 upe μ spin $=\sqrt{3}$ $=1.73 \mathrm{BM}$

Q. 17 (C)

Complex contains only one Cl^{-}out side the coordination sphere which gives one mole white ppt. AgNO_{3}
Q. 18 (B)

Trans
Optically inactive

Optically active
Q. 19 (C)
Q. 20 (C)
Q. 21 (C)

can be written as

Q. 22 (A)

It is polar in nature. The chelate rings require the cis structure, because the chelating ligand is too small to span the trans positions.
Q. 23 (D)

Option has no POS next has POS (plane of symmetry)
Q. 24 (B)

dsp^{2} sq. planer

Tetrahedral complex does not show geometrical isomerism
Q. 25 (D)
$\left[\mathrm{CoBr}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{2+}+\mathrm{SO}_{4}{ }^{2-}$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right]^{+}+\mathrm{Br}^{-}$
Q. 26 (C)
(A) $\left[\mathrm{NiBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ having $3 \mathrm{~d}^{8}$ configuration with strong field ligand PEt_{3} (not so bulkier as PPh_{3}), the complex is square planar and diamagnetic.
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ having $3 \mathrm{~d}^{9}$ configuration is square planar in which one electron jumps to $4 p$ orbital. It contains one unpaired electron; so it is paramagnetic.
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ having $3 \mathrm{~d}^{6}$ configuration has greater CFSE and thus favours pairing of electrons. So it has $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation and is diamagnetic.
In $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{--}$, the CN^{-}is strong field ligand. So,

(C)

(CITCI)

$\left(\mathrm{NH}_{3} \mathrm{TNH}_{3}\right)$

(D) $\left.\left.\stackrel{\text { II }}{\operatorname{Pt}}\left(\mathrm{NH}_{3}\right)_{4}\right] \stackrel{\mathrm{IV}}{\mathrm{Pt} \mathrm{Cl}}{ }_{6}\right]$ and $\left.\stackrel{\mathrm{IV}}{\mathrm{Pt}}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right][\stackrel{\mathrm{II}}{\mathrm{Pt} \mathrm{Cl}}]$ isomeric forms.

Q. 27 (C)

$\mathrm{Ma}_{3} \mathrm{~b}, \mathrm{Ma}_{4}$ and $\mathrm{M}(\mathrm{AA})_{2}$ (symmetrical bidentate ligand) have only one form; they does not show geometrical isomerism. But $\mathrm{M}(\mathrm{AB})(\mathrm{CD})$ shows two geometrical isomerism.

ATD

ATC
Q. 28 (A)

Only cis isomer as trans isomer replacement induces strain.

trans

not possible
Q. 29 (B)
$\mathrm{Ma}_{2} \mathrm{~b}_{4}$ has two geometrical isomers one cis- and one trans. Similarly $\mathrm{Ma}_{2} \mathrm{~b}_{2}$ also has one cis- and one trans-forms.
Q. 30 (B)

As trans isomer has symmetry elements it does not show optical isomerism.
(A), (C) and (D) are correct statements.

Q. 31 (A)

Q. 32 (C)
(1) cis - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$has plane of symmetry as well as centre of symmetry ; so optically inactive.
(2) trans - $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$has plane of symmetry as well as centre of symmetry ; so optically inactive.
(3) cis - $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$lacks plane of symmetry as well as centre of symmetry; so optically active.
(4) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ lacks axis of internal rotation ; so optically active.
Q. 33 (B)
(B) Exhibits linkage isomerism as it has ambidentate ligand, $\mathrm{NO}_{2}{ }^{-}$.
Q. 34 (A)
(A) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$show geometrical isomerism and its only cis-form show optical isomerism.

(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ exists only in one form.
(C)

It does not shows optical isomerism because of the presence of plane of symmetry and centre of symmetry.
(D) $\left[\mathrm{Cr}(\mathrm{OX})_{3}\right]^{3-}$ shows optical isomerism but does not show geometrical isomerism because of the same type of ligands.

Q. 35 (C)

In both complexes the oxidation state of cobalt is +3 with $3 \mathrm{~d}^{6}$ configuration. Except $\left[\mathrm{CoF}_{6}\right]^{3-}$, all other complexes of cobalt with weak field and strong field ligands are inner orbital complexes and diamagnetic because of higher CFSE.
$\left[\mathrm{CoF}_{6}{ }^{3-}\right.$

Q. 36 (B)

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ diamagnetic $; \mathrm{CFSE}=-0.4 \times 6 \Delta_{0}+2 \mathrm{P}$,
CFSE $=-0.4 \times 6 \times 10 \mathrm{dq}+2 \mathrm{P}=-24 \mathrm{dq}+2 \mathrm{P}$
$\left[\mathrm{CoF}_{6}\right]^{3-}$ paramagnetic ; $\mathrm{CFSE}=-0.4 \times 4+0.6 \times 2 \times$ $10 \mathrm{dq}=-4.0 \mathrm{dq}$
$\Delta_{\mathrm{o}}=10 \mathrm{dq}$ (arbitrary value of crystal field splitting energy)
Q. 37 (A)

diamagnetic and has $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation.

$\mathbf{S}_{2}: \mathrm{NO}_{2}{ }^{-}$is strong field ligand and thus it is inner orbital complex and paramagnetic with one unpaired electron present in higher 4d-orbital
$\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-}$
$3 \mathrm{~d}^{7}$

$\mathbf{S}_{3}: 5 \mathrm{~d}^{8}$ configuration; thus diamagnetic and dsp ${ }^{2}$ hybridisation ($5 \mathrm{~d}^{8}$ has higher CFSE so that $\Delta_{\mathrm{o}}>\mathrm{p}$)
Q. 38 (B)

If strong field ligand is used then pairing causes dsp ${ }^{3}$ hybridisation which is thermodynamically not allowed so only possible hybridisation is $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
Q. 39 (A)
(B) $\left[\mathrm{FeCl}_{4}\right]^{2-}-\mathrm{sp}^{3}$ with four unpaired electrons. It is paramagnetic with four unpaired electrons (valence shell electron configuration, $3 \mathrm{~d}^{6}$).
(C) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}-\mathrm{d}^{2} \mathrm{sp}^{3}$ with one unpaired electron. ' CN^{-}' is a strong field ligand and, therefore, it compels for pairing of electrons to have $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation. It is paramagnetic with one unpaired electron (valence shell electron configuration, $3 \mathrm{~d}^{5}$)
(D) $\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{NO}^{+}\right)_{2}\right]-\mathrm{sp}^{3}$ and diamagnetic. Iron is in -II oxidation state. So,
$\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{NO}^{+}\right)_{2}\right]$

Q. 40 (C)
Q. 41 (B)
Br^{-}is weak field ligand cannot for inner d-orbital complex \& square planer geometry is produced by dsp ${ }^{2}$ hybidisation
Q. 42 (B)
(I) FaC wrt. Cl
(II) Mer wrt. Cl
(III) Mer wrt $\mathrm{OH}^{-} \& \mathrm{NH}_{3}$
Q. 43 (C)
$\mathrm{Fe}^{2+} \mathrm{d}^{6}$
d^{6} in weak field
$\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
4 unpaired electrons
$\mu=\sqrt{4 \times 6}$ BM
$\mu_{\text {spin }}=4.91 \mathrm{BM}$
d^{6} in strong field
$\uparrow \downarrow \quad \uparrow \downarrow \uparrow \downarrow$
$\mu=0$
spin
Q. 44 (C)
$\mathrm{H}_{2} \mathrm{O}$ is weak field ligand $\& \mathrm{Br}^{-}$is strong field ligand for transition metal belonging to II \& III transition series.
Q. 45 (D)
Cl^{-}is weak field ligand for transition metal belonging to the first transition series but strong field ligand for $2^{\text {nd }} \& 3^{\text {rd }}$ transition series metal so for C.N. $=4$ $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is
sp^{3} hybridised
CN^{-}is strong field ligand
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}\left[\mathrm{Pd}(\mathrm{CN})_{4}\right]^{2-}$
$\left[\mathrm{PdCl}_{4}\right]^{2-}$
are dsp^{2}
hybridised.
Q. 46 (D)
(i) It is tetrahedral $\left(\mathrm{sp}^{3}\right)$ because there is no $(\mathrm{n}-1) \mathrm{d}$ orbital vacant for dsp^{2} hybridisation.
(ii) Ag with +3 oxidation state and $4 \mathrm{~d}^{8}$ configuration
has square planar geometry.
(iii) It is tetrahedral $\left(\mathrm{sp}^{3}\right)$ because there is no $(\mathrm{n}-1) \mathrm{d}$ orbital vacant for dsp^{2} hybridisation.
(iv) Pt with +2 oxidation state and $5 \mathrm{~d}^{8}$ configuration has square planar geometry.
(v) Rh with +1 oxidation state and $4 \mathrm{~d}^{8}$ configuration has square planar geometry.
When we place these complexes in a magnetic balance, then there is decrease in their weights. This indicates that the complexes are dimagnetic.

Q. 47 (A)

All electrons are paired ; so diamagnetic and has $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation.
$\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]+\mathrm{H}_{2} \longrightarrow\left[\mathrm{RhCl}(\mathrm{H})_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$
Wilkinsons's catalyst
New complex chloridodihydridotris(triphenyl phosphine)rhodium(III)
$\mathrm{Rh}(\mathrm{III}) \rightarrow 4 \mathrm{~d}^{6}$

Q. 48 (C)
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$
$\left[\mathrm{Ni}(\mathrm{CN})_{6}\right]^{4-}$
$\left[\mathrm{ZnBr}_{4}\right]^{2-}$
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
Q. 49 (B)
$\mathrm{d}^{3}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \quad 3$ upe
$\mathrm{d}^{6}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad 4$ upe
$\mathrm{d}^{8} \quad\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad 2$ upe
$\mathrm{d}^{10}\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \quad 0$ upe
$\mathrm{H}_{2} \mathrm{O}$ is weak field ligand
Q. 50 (D)
$\left[\mathrm{Fe}(\mathrm{I})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{+}\right]$

Three unpaired electrons six $-\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbital So $\mu=3.87$.
Q. 51 (C)
(I) ${ }_{26} \mathrm{Cr}(-\mathrm{IV})-3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \quad ; \quad\left[\mathrm{Cr}(\mathrm{CO})_{4}\right]^{4-}$

CO is strong field ligand; so complex is diamagnetic and tetrahedral.
(II) ${ }_{28} \mathrm{Ni}(+\mathrm{II})-3 \mathrm{~d}^{8} ;\left[\mathrm{Ni}(\mathrm{DMGH})_{2}\right]$

DMGH is a chelating lignad; so complex is diamagnetic and square planar.
(III) ${ }_{78} \mathrm{Pt}(+\mathrm{II})-5 \mathrm{~d}^{8} ;\left[\mathrm{PtHBr}\left(\mathrm{PEt}_{3}\right)_{2}\right]$

$5 \mathrm{~d}^{8}$ configuration has greater CFSE, so complex is diamagnetic and square planar.
(IV) ${ }_{47} \mathrm{Ag}(+\mathrm{I})-4 \mathrm{~d}^{10} ;\left[\mathrm{Ag}(\mathrm{SCN})_{4}\right]^{3-}$

No empty d-orbital is available for dsp^{2} hybridisation and SCN^{-}is weak field ligand, so complex is tetrahedral and diamagnetic.
(V) ${ }_{79} \mathrm{Au}(+\mathrm{III})-5 \mathrm{~d}^{8} ;\left[\mathrm{AuBr}_{4}\right]^{-}$

$5 \mathrm{~d}^{8}$ configuration has greater CFSE, so complex is diamagnetic and square planar.

Q. 52 (C)

Paramagnetic complexes are coloured $\mathrm{d}^{0} \& \mathrm{~d}^{10}$ complexes are colourless $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \mathrm{Cr}^{+6}$ is diamagnetic but coloured due to charge transfer.
Q. 53 (D)
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \quad 3$ upe sp_{3} T. H.
$\left[\mathrm{CoCl}_{4}\right]^{2+} \quad 3$ upe sp_{3} T. H.
$\left[\mathrm{Co}(\mathrm{Dmg})_{2}\right]$
1upe dsp ${ }^{2}$ square planner

Q. 54 (C)

Let O.N. of Os be x
$\mathrm{X}-1+(-2) \times 2+(-1)+(-1)=+1$
$\mathrm{X}=+8$
$\left[\mathrm{Os}(\mathrm{ONO})^{-1}(\mathrm{O})_{2}^{-2}\left(\mathrm{O}_{2}\right)^{-1}(\mathrm{SCN})^{-1} \mathrm{H}_{2} \mathrm{O}\right]^{+} \mathrm{OH}^{-}$ \rightarrow superoxide ion
C.N. $=6$

Os belongs to $\mathrm{III}^{\mathrm{rd}}$ transition series so all ligands acts as strong field ligand so $\mathrm{d}^{2} \mathrm{sp}^{3}$
Os^{8+} has d^{0} congifuration.
Q. 55 (D)

Maximum unpaired electron possible are five $\uparrow \uparrow \uparrow \uparrow \uparrow$
d^{5}
$\mu_{\text {spin }}=\sqrt{5 \times 7}$ B. M. $=\sqrt{35}$ B. $M=5.92 B M$
Q. 56 (D)
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=3 \times(-0.4)+2 \times(0.6)=0$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=3 \times(-0.4)+1 \times(0.6)=0.6 \Delta_{0}$
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}=3 \times(-0.4)+1 \times(0.6)=0.6 \Delta_{0}$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}=3 \times(-0.4)+0 \times(0.6)=1.2 \Delta_{0}$
(C)

Cis

Q. 58 (A)

$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	$\mathrm{Fe}^{2+} 3\left(\mathrm{t}_{2} \mathrm{~g}\right)^{6} 3(\mathrm{eg})^{0}$ No upe
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$	dsp^{2} sq. palnner 1 upe
$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	$\mathrm{d}^{2} \mathrm{sp}^{3} 1$ upe
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$	$\mathrm{d}^{2} \mathrm{sp}^{3} 1$ upe

Q. 59 (A)

M.M. $=\sqrt{n(n+2)}$
$=\sqrt{2(2+2)}=\sqrt{8}$ B. M. $=2.83 \mathrm{BM}$

Q. 60 (C)

μ spin $=2.83=\sqrt{n(n+2)}$
$\mathrm{n}=2$ (upe)
$\mathrm{d}^{3}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} 3$ upe
$\mathrm{d}^{10}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ Oupe
$d^{7}\left[\mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} 2$ upe
$\mathrm{d}^{7}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} 3$ upe
Q. 61 (B)
${ }^{-} \mathrm{CN}$ strong field ligand
Q. 62 (A)
$\left[\mathrm{NiF}_{6}\right]^{2-} \quad 0$ upe
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \quad 1$ upe
$\left[\mathrm{CoF}_{6}\right]^{3-} \quad 4$ upe (F^{-}acts as weak field ligand)
$[\mathrm{Fe}(E D T A)]^{-} \quad 1$ upe (EDTA ${ }^{4}$ acts as strong field ligand)

Q. 63 (B)

In both complexes the oxidation state of Ni is +2 . In $\left[\mathrm{NiCl}_{4}\right]^{2-}$ the Cl^{-}is a weak field ligand, so it does not compel for pairing. Then,
$\left[\mathrm{NiCl}_{4}\right]^{2-}$

Hence NiCI_{4} is paramagnetic and tetrahedral.
In $\left[\mathrm{NiCI}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ the trimethyl phosphine is a strong field ligands; so it compels for the pairing of electrons. Then,
$\left[\mathrm{NiCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$

Hence $\left[\mathrm{NiCI}_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ is diamagnetic and square planar.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (ABD)

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI}$
Q. 2 (BD)

Applying law of equivalence
eq of complex $=$ eq of $\mathrm{Ag} \mathrm{NO}_{3}$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
$200 \times 0.01 \times 2=0.1 \times v$
$=40 \mathrm{~mL}$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O}$
$200 \times 0.01 \times 1=0.1 \times V$
$\mathrm{V}=20 \mathrm{ml}$
Q. 3 (BD)
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgCl}+$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$
number of mole of complex $=200 \times 0.01=2$
required milli mole of $\mathrm{AgNO}_{3}=4$
milli mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}} \quad \Rightarrow 4=0.1 \times \mathrm{V}_{\mathrm{ml}}=40$ ml
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}_{2}\right] \mathrm{Cl}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgCl}+$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}_{2}\right]\left(\mathrm{NO}_{3}\right)$
number of mole of complex $=200 \times 0.01=2$
required milli mole of $\mathrm{AgNO}_{3}=2$
milli mole $=\mathrm{M} \times \mathrm{V}_{\mathrm{ml}} \quad \Rightarrow 2=0.1 \times \mathrm{V}_{\mathrm{ml}}=20$ ml .

Q. 4 (BCD)

Q. 5 (ABC)
(A) For a given metal and ligand the stability is greater when the charge on the metal ion is greater; as oxidation state increases size of cation decreases.
(B) F^{-}forms strongest complex. Smaller the size of the anion, greater the charge density on the atom and hence greater the sability of complex.
(C) Smaller the size of the metal ion, greater is the stability of the complex.
(D) Complex having chelate rings is more stable.
Q. 6 (ACD)
(A) EAN of $\mathrm{Cr}=24+12=36$
and EAN of $\mathrm{Fe}=26+10=36$.
(B) EAN of $\mathrm{Co}^{3+}=25+12=37$
and EAN of $\mathrm{Ni}^{2+}=26+12=38$.
(C) EAN of $\mathrm{Cu}^{+}=28+12=36$
and EAN of $\mathrm{Ni}=28+8=36$.
(D) EAN of $\mathrm{V}^{-}=24+12=36$
and $E A N$ of $\mathrm{Co}^{3+}=24+12=36$.

Q. 7 (ABCD)

Let O.N. of Co be x
$\mathrm{O} \times 2+\mathrm{x}+(-1)+(-1)+\mathrm{x}+\mathrm{O} \times 2=+4$
$x=+3$
Q. 8 (ABD)
(C) It is not correct formula because the Fe is in +3 oxidation state and as such formula should be $\left[\mathrm{Fe}^{3+}(\mathrm{CN})_{6}\right]^{3-}$ or $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.
Q. 9 (AD)
Cl^{-}ions are present in ionisation spheres in complexes (A) and (D) and thus react with AgNO_{3} to form the white precipitate of AgCl .
Q. 10 (A)
(A) $\mathbf{M a}_{2} \mathbf{b}_{2}$: $\quad \mathbf{2}$ (aa)(bb)
(ab)(ab)
$\begin{array}{llll}\text { (B) } \mathbf{M a}_{2} \mathbf{b}_{4} & - & 2 & (\mathrm{aa})(\mathrm{bb})(\mathrm{bb}) \\ (\mathrm{ab})(\mathrm{ab})(\mathrm{bb})\end{array}$
(C) \& (D) $\mathrm{Ma}_{5} \mathrm{~b}$ and Ma_{6}, have only one form.
Q. 11 (ACD)
$\left[\mathrm{COCl}_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br} \&\left[\mathrm{CoClBr}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ are ionisation isomers.

Q. 12 (ACD)
(A) $\left[\mathrm{CoCl}_{2}\left(\mathrm{OH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$ and $\left[\mathrm{CoClBr}\left(\mathrm{OH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ are ionisation isomers.
(B) Does not have ambidentate ligand; so does not show linkage isomerism.
(C) It is $\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{c}_{2}$ type.
$\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{c}_{2}-5 \quad(\mathrm{aa})(\mathrm{bb})(\mathrm{cc})$ (optically inactive)
(aa)(bc)(bc) (optically inactive)
(bb)(ac)(ac) (optically inactive)
(cc)(ab)(ab) (optically inactive)
(ab)(ac)(bc) (optically active)
Q. 13 (BD)

II \& III are Non super mirror image
I \& II are geometrical isomers
I is cis wrt Cl
II is trans wrt Cl
Q. 14 (ABCD)
$\left[\mathrm{Pt}(\mathrm{bn})_{2}\right]^{2+}$ has square planner complex \& hence molecular plane is the plane of symmetry

cis is optically active where as trans form is optically inactive

Non super imposable mirror image

No plane of symmetry

Q. 15 (BD)

Q. 16 (AB)

fac

Mer

Two optical isomers

$\left[\mathrm{CoBrCl}(\mathrm{Ox})_{2}\right]^{3-}$ more than three stereosiomers

Q. 17 (AC)

(A) $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$
carbonylchloridobis(triphenylphosphine)iridium(I).
(B) Coordination number of Ir is four. Ir is in $(+1)$ oxidation state with $4 \mathrm{~d}^{8}$ configuration. It is trans isomer, so its geometry should be square planar.
$\left[\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]$

(C) All electrons are paired ; so magnetic moment is zero
(D)

The complex has plane of symmetry, so it does not show optical isomerism.
Q. 18 (AC)
$\mathrm{Na}\left[\mathrm{CoCl}_{2}\left(\mathrm{NO}_{2}\right)\left(\sigma-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$
Let O.N. of cobe x
$x-2-1-1=-1$
$\mathrm{x}=+3$
Q. 19 (ABC)

Ambidentate ligands can attach to metal ion through two coordination sites giving linkage isomerism. All are ambidentate ligands.
Q. 20 (ABCD)
(A) $\left[\stackrel{\mathrm{II}}{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$ and $\left[\stackrel{\mathrm{Co}}{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}$ - linkage isomerism
$\left[\begin{array}{l}\mathrm{II} \\ \left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl} \text { and }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{NO}_{2}--~ . ~\end{array}\right.$
ionization isomerism
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{2}\right)_{3}$ and
$\left[\mathrm{ClI}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ - hydrate
isomerism
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and
$\left[\mathrm{III}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO}]\left(\mathrm{NO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$
(C) $\left.\left[\stackrel{\|!}{\mathrm{Pt}}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \stackrel{\|}{\mathrm{Pt}}(\mathrm{SCN})_{4}\right]^{2-}$ and
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{SCN})\right]^{+}\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{SCN})_{3}\right]^{-}-$
coordination isomerism
$\left.\left.\stackrel{\|!}{\mathrm{Pt}}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \stackrel{\text { II }}{\mathrm{Pt}}(\mathrm{SCN})_{4}\right]^{2-}$ and $\left[\stackrel{\| 1}{\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}\right.$
$\left[\stackrel{11}{\mathrm{Pt}}(\mathrm{NCS})_{4}\right]^{2-}$ - linkage isomerism
(D) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{NO}_{2}\right)_{2}$ - ionization
isomerism
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\right.$
$\left.(\mathrm{ONO})_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$ - linkage isomerism
Q. 21 (ABCD)
(A) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{-}$
$\mathrm{Ag}(\mathrm{I}) \rightarrow 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{0} \mathrm{H}_{3} \mathrm{~N} \longrightarrow \mathrm{Ag}^{+} \longrightarrow \mathrm{NH}_{3}$

(B) $\mathrm{NiCl}_{4}{ }^{2-}, \mathrm{VO}_{4}{ }^{3-}$ and MnO_{4}^{-}have tetrahedral geometries.
$\mathrm{Ni}^{2+} \rightarrow 3 \mathrm{~d}^{8}$

(C) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+},\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ have square planar geometries.
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}\right.$

$\mathrm{Pt}^{2+},[\mathrm{Xe}] 4 \mathrm{f}^{14} 5 \mathrm{~d}^{8}$

$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

dsp^{2} hybrid orbitals
Similarly the hybridisation scheme for $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ (CN^{-}is a strong field ligand) is as shown in figure. $\mathrm{Ni}^{2+},[\mathrm{Ar}] 3 \mathrm{~d}^{8}$

$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

dsp ${ }^{2}$ hybrid orbitals
(D) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ is diamagnetic and has dsp ${ }^{3}$ hybridisation. So it has trigonal bipyramidal geometry.

Q. 22 (AD)

$\left[\operatorname{Ir}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{d}^{2} \mathrm{SP}^{3}$ It is Inner orbital complex, dimagnetic
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \mathrm{SP}^{3} \mathrm{~d}^{2}$ Outer orbital complex, Para Magnetic
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+} \mathrm{d}^{2} \mathrm{SP}^{3}\right.$ Inner orbital complex, Para
Magnetic
$\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \mathrm{d}^{2} \mathrm{SP}^{3}$ Inner orbital complex, di
Magnetic
Q. 23 (ACD)
$\left[\mathrm{Cu}^{2+}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
$\mathrm{SO}_{4}^{2-}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
(White ppt)
Conductivity corresponds to two ions

Q. 24 (ACD)

$\left[\mathrm{TiCl}_{4}\right]-3 \mathrm{~d}^{0} 4 \mathrm{~s}^{0} \rightarrow$ tetrahedral diamagnetic.
$\left[\mathrm{FeCl}_{4}\right]^{-}-3 \mathrm{~d}^{5} \rightarrow$ tetrahedral with five unpaired electrons, so paramagnetic ?

Q. 25 (BCD)

$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{dsp}^{2}$ square planner paramagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \mathrm{sp}^{3}$ Tetrahedral Dimagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \mathrm{sp}^{3}$ Tetrahedral Dimagnetic
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)\right]_{4}{ }^{2+} \mathrm{sp}^{3}$ Tetrahedral Dimagnetic

Q. 26 (AC)

$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{d}^{2} \mathrm{sp}^{3} 1$ unpaired electron (upe) octahedral
$\left[\mathrm{Mn}(\mathrm{CO})_{s}\right]^{-} \mathrm{dsp}^{3} 0$ upe TBP
$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \mathrm{sp}^{3} \mathrm{~d}^{2} 4$ upe octahedral $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \mathrm{sp}^{3} 0$ upe dimagnetic

Q. 27 (B)

(A) $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-} ; 3 \mathrm{~d}^{6}$ configuration, all electrons are paired and hybridisation is $\mathrm{d}^{2} \mathrm{sp}^{3}$-diamagnetic with $\mu=0$.
(B) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} ; 3 \mathrm{~d}^{3}$ configuration, all electrons are unpaired and paramagnetic with μ (approximately)3.78 B.M and hybridisaion is $\mathrm{d}^{2} \mathrm{sp}^{3}\left(\mathrm{NH}_{3}\right.$ strong field ligand $)$.
(C) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$; $3 \mathrm{~d}^{6} 4 \mathrm{~s}^{1}$ configuration, hybridisation is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and is paramagnetic with three unpaired electrons ($\mu \approx 3.78$ B.M.)
(D) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+} ; 3 \mathrm{~d}^{10}\right.$ configuration, all electrons are paired so diamagnetic with $\mu=0$ and hybridisation is $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
Q. 28 (BD)
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \mathrm{d}^{6}$ No upe $\mathrm{d}^{2} \mathrm{sp}^{3}$ dimagnetic
$\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right)\right]^{2-} \mathrm{d}^{8}$ No upe dsp ${ }^{2}$ dimagnetic
$\left[\mathrm{Zn}\left(\mathrm{OH}_{4}\right)\right]^{2-}$ Tetrahyroxido zincate (II), en is a bidentate ligand
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{3+} \quad \mathrm{C} . \mathrm{N} .=6$

Q. 29 (ABD)

$\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-}$ involves chelation
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \mathrm{d}^{2} \mathrm{sp}^{3} 1$ upe by excitaion in d-orbital
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{dsp}^{2} 1$ upe by excitation in P-orbital
Colour due to charge transfer is more intense than dd transition
$\left(\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$

Q. 30 (ABD)
$\left.\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}\right](\mathrm{NO})\right]$
Let O.N. of iron
$2+x-5+1=0$ be x
$\mathrm{x}=+2$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{Ag}+4 \mathrm{~d}^{16}$ sp hybridised Linear dimagnetic, 0 upe
$\left[\mathrm{Fe}^{3+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{sp}^{3} \mathrm{~d}^{2} 5$ upe paramagnetic
$\left[\mathrm{Ni}(\mathrm{Co})_{4}\right]$ Let O.N. of $\mathrm{Ni}=x$
$x+0 \times 4=0$
$\mathrm{x}=0$

Q. 31 (D)

(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \mathrm{d}^{6}$

CN^{-}is strong field lignad.
(B) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

CO is strong field lignad.
(C) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} ; \mathrm{Ni}^{2+}$ has $3 \mathrm{~d}^{8}$ configuration and CN^{-} is strong field lignad. So, complex is square planar and diamagnetic.
(D) $\left[\mathrm{CoF}_{6}\right]^{3-}$

ligand does not allow pairing.
Q. 32 (ABD)
$\left.{ }^{[+1} \mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} \mathrm{sp}^{3}$ Tetrahedral No upe
$\left[{ }^{2+} \mathrm{Cd}(\mathrm{CN})_{4}\right]^{2-} \mathrm{sp}^{3}$ Tetrahedral No upe
${ }^{[2+} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ dsp ${ }^{2}$ square planner 1 upe
$\left[\mathrm{Cd}\left(\mathrm{CN}_{4}\right)\right]^{2-}$ complex is thermodynamicaly unstable \& hence it gets decomposed after passing through $\mathrm{H}_{2} \mathrm{~S}$
$\left[\mathrm{Cd}(\mathrm{CN})_{4}\right]^{2-}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Cds}+\mathrm{CN}^{-}+\mathrm{H}^{+}$
(yellow ppt)
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{No}$ reaction
Q. 33 (BCD)
$\mathrm{Pt}^{2+} 5 \mathrm{~d}^{8}$
$\mathrm{Pd}^{2+} 4 \mathrm{~d}^{8}$
for $2^{\text {nd }} \& 3^{\text {rd }}$ transitaian series all ligand acts as strong field ligand so for C.N. $=4$ the prefreble geometry is square planer
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2} \mathrm{dsp}^{2}$ square planner, dimagnetic
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \mathrm{Sp}^{3}$ tetrahedral, dimagnetic
$\left(3 \mathrm{~d}^{8}\right) \mathrm{Ni}^{2+}$ when tends to form inner d-orbital complex the hybridisatioan in $\mathrm{dsp}^{3} \mathrm{~d}$ in which one d comes from 4 d so the energy difference is so high is mixing is not possible
Q. 34 (AC)
(i) ${ }_{25} \mathrm{Mn}$ is in + II oxidation state. The electronic configuration of Mn^{2+} is $[\mathrm{Ar}]^{18} 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$. The CN^{-}is strong field ligand. So,
$\left[\mathrm{Mn}(\mathrm{CN}){ }_{6}\right]^{4}$

It is inner orbital / low spin octahedral complex with one unpaired electron.
Similarly for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

It is inner orbital / low spin octahedral complex with no unpaired electron.
(ii) As the negative charge on the metal increases from the manganese complex to vanadium complex, it is
delocalised on to the ligands by the π back bonding. This strengthens the metal-carbon bond and weakens the $\mathrm{C}-\mathrm{O}$ bond (as bond order of CO decreases).
Hence order of $\mathrm{C}-\mathrm{O}$ bond strength is: $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}>$ $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]>\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}>\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$ and $\mathrm{M}-\mathrm{C}$ bond strength is: $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}<\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]<\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}<$ $\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}$.
(iii) $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ is Wilkinson's catalyst. Because of $4 \mathrm{~d}^{8}$ configuration its higher CFSE favours square planar low spin complex (i.e. dsp^{2}). It is used as homogeneous catalyst for the hydrogenation of alkenes.
(iv) False statement : trans $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$has a centre and several planes of symmetry but the cis-form has neither, and (+) and (-) forms of cis $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}{ }^{+}\right.$have been separated.

(v) $\operatorname{In~} \mathrm{Ni}(\mathrm{CO})_{4}$, the Ni is in zero oxidation state. The CO is strong field ligand, so
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

It is outer orbital complex with $\mu_{s}=0$. EAN $=28+8$ $=36$
In $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ the Ni is in +II oxidation state.
Ligand triphenyl phosphine in spite of strong field ligand favours tetrahedral geometry on account of its bulkier nature. So,
$\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$

It is also outer orbital complex with $\mu_{\mathrm{s}}=\sqrt{8} \sim 2.73$ B.M.

EAN $=26+8=34$.

Q. 35 (BCD)

In complex nickel is in zero oxidation state. The CO is strong field ligand and therefore compels for the pairing of electrons. The hybridisation scheme is as shown in figure.

$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

sp^{3} hybrid orbitals
Four pairs of electrons from four CO.
It is tetrahedral and as all electrons are paired so diamagnetic.
Q. 36 (ABD)
(A) $\left[\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}\right]$

$\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation
(C) $\left[\mathrm{V}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

(D) $\left[\mathrm{Mn}^{3-}\left(\mathrm{NO}^{+}\right)_{3}(\mathrm{CO})\right]$

Q. 37 (BD)
$\mathrm{Ni}(\mathrm{dmg})_{2}$ complex is square planar and dimagnetic.
(B) Mn in $\left[\mathrm{MnO}_{4}\right]^{-}$is in +7 oxidation state having [Ar$]^{18} 3 \mathrm{~d}^{0}$ configuration. Complex ion is tetrahedral and diamagnetic
(D) Pt (II) $-5 \mathrm{~d}^{8}$ configuration. Complex is square planar and therefore, dimagnetic.
So, $\mu=0$
Q. 38 (D)

It is homogeneous catalyst for hydrogenation of alkenes.
Q. 39 (D)

cis -

trans -

It shows geometrical isomerism but not optical isomerism due to the presence of at least one plane of symmetry.
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{NO}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{BrNO}_{2}\right] \mathrm{Br}$ are ionisation isomers and later complex reacts with AgNO_{3} solution to give pale yellow precipitate. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{BrNO}_{2}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{BrONO}\right] \mathrm{Br}$ are linkage isomers.
Q. 40 (C)

trans-form is optically inactive because it is achiral.
Q. 41 (D)
Q. 42 (B)
$\mathrm{t}^{3}{ }_{2 \mathrm{~g}} \mathrm{e}^{2}{ }_{\mathrm{g}}$ outer orbital
$\mathrm{t}^{3}{ }_{2 \mathrm{~g}} \mathrm{e}^{\mathrm{O}}{ }_{\mathrm{g}}$ inner orbital
$\mathrm{t}^{4}{ }_{2 \mathrm{~g}} \mathrm{e}^{2}{ }_{\mathrm{g}}$ outer orbital $\mathrm{t}_{2 \mathrm{~g}} \mathrm{Ce}^{1}{ }_{\mathrm{g}}$ inner orbital by excitation of electron.
Q. 43 (B)
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Delta>\mathrm{P}$ as for $\mathrm{Co}^{3+} \mathrm{Cl}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{F}^{-}$are only weak field ligands, rest are strong field ligands.
Q. 44 (D)

Water present in ionisation sphere is absorbed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (dehydrating agent). If Cl^{-}present as counter ion then reacts with, AgNO_{3} to give white precipitate of AgCl .
Q. 45 (C)

With F^{-}ligand, metal ion has electron configuration, $\mathrm{t}_{2 \mathrm{~g}}^{2,1,1} \mathrm{e}_{\mathrm{g}}^{1,1}$.
So, $\mu=\sqrt{4(4+2)} \approx 4.9 \mathrm{BM}$; where $\mathrm{n}=$ number of unpaired electrons.
Q. 46 (B)

With $\mathrm{NO}_{2}{ }^{-}$ligand, electron configuration in crystal field splitting for Co^{3+} will be $\mathrm{t}_{2 \mathrm{~g}}^{2,2,2} \mathrm{e}_{\mathrm{g}}^{0}$ i.e. no unpaired electrons.

Q. 47 (A)

Complex contains one Cl^{-}as counter ion.
One mole of complex $=$ one mole of Cl^{-}
As two mole of Cl^{-}gives one mole of PbCl_{2}.
\therefore One mole of Cl^{-}will give $1 / 2$ mole of PbCl_{2}.
Q. 48 (A)

Only two geometrical isomers are possible of $\left[\mathrm{CoBrCl}(\mathrm{en})_{2}\right]^{+}$.

Q. 49 (A)
(A) dsp^{2} no unpair e^{-}
(B) experimental
(C) $\mathrm{sp}^{3} \mathrm{~d}^{2} 2$ unpair e^{-}
(D) experimental
Q. 50 (C)
$2 \sqrt{2}=\sqrt{n(n+2)}$
$\mathrm{n}=2$ unpaired electron.
(A) dsp^{2} no unpair e^{-}
(B) dsp^{2} no unpair e^{-}
(C) $\mathrm{sp}^{3} \mathrm{~d}^{2} 2$ unpair e^{-}
(D) $\mathrm{sp}^{3} \mathrm{~d}^{2} 2$ unpair e^{-}but no ion

Q. 51 (B)

Higher value of magnetic moment indicates that more no of unpaired electron so weak field ligand and outer orbital complex are formed whereas low value indi-
cates pairing \& hence strong field ligand \& inner orbital complex are formed.
Q. 52 (D)
Ti^{3+} have same electronic configuration i.e., $[\mathrm{Ar}] 3 \mathrm{~d}^{1}$ $4 s^{\circ}$ with low as well as with high crystal field ligand. Ti^{3+} with high crystal field stabilization energy on account of higher oxidation state favours the formation of inner orbital complex i.e., $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation.
Q. 53 (D)

Both are strong field ligands but complex with PPh_{3} is tetrahedral due to its bulkier nature.
Q. 54 (A)
Q. 55 (B) complex contain ambident ligand
Q. 56 (A)

Rest complex has square planner geometry \& hence molecular plane is plane of symmetry.
Q. 57 (A)
Q. 58 (B)

$$
(\mathrm{X})=\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-} ;(\mathrm{Y})=\left[\mathrm{Co}(\mathrm{dmg})_{2}\right] .
$$

Q. 59 (A)
$\mathrm{X}=\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$, cobalt is in +2 oxidation state and SCN^{-}is weak field ligand. So,
$\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$:

$\mathrm{Y}=\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]: \quad$ Nickel is in +2 oxidation state and dmg is chelating ligand. So,
$\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]:$

Q. 60 (C)
$\mathrm{X}=\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$, cobalt is in +2 oxidation state and SCN^{-}is weak field ligand. So,
$\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$:
Q. 63 (A) - q, r, t ; (B) - q, r, t ; (C) - p, s ; (D) - q, r
(A) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} ; \mathrm{Co}^{3+}$ has d^{6} configuration which has higher CFSE ; so hybridisation is $\mathrm{d}^{2} \mathrm{sp}^{3}$ and complex is diamagnetic. 'en' is a bidentate chelate ligand.
(B) $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-} ; \mathrm{Co}^{3+}$ has d^{6} configuration which has higher CFSE ; so hybridisation is $\mathrm{d}^{2} \mathrm{sp}^{3}$ and complex is diamagnetic. 'ox' is a bidentate chelate ligand.
(C) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} ; \mathrm{Co}^{2+}$ has d^{7} configuration; $\mathrm{H}_{2} \mathrm{O}$ is a weak field monodentated ligand, so it is paramagnetic with three unpaired electrons having $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
(D) $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-} ; \mathrm{Co}^{3+}$ has d^{6} configuration which has higher CFSE ; so hybridisation is $\mathrm{d}^{2} \mathrm{sp}^{3}$ and complex is diamagnetic. ' NO_{2}^{-1} is a monodentate ligand.
Q. $64(\mathrm{~A})-\mathrm{s} ;(\mathrm{B})-\mathrm{p} ;(\mathrm{C})-\mathrm{q}$
Q. 65 (A) - p, r, t; (B) - p, s, t; (C) - p, r, t; (D) - q, r
(A) $\left[\begin{array}{ll}\mathrm{III} \\ \mathrm{Fe}(\mathrm{en})_{3}\end{array}\right]^{3+}$

Number of unpaired electrons $=1$; so paramagnetic (B) $\left[\begin{array}{l}\text { III } \\ \mathrm{Co}(o x) \\ 3\end{array}\right]^{3-}$ -

Number of unpaired electrons $=0$; so diamagnetic.
(C) $\left[\begin{array}{ll}\mathrm{III} \\ \mathrm{Cr} \\ (\mathrm{CN})_{6}\end{array}\right]^{3-}$ -

Number of unpaired electrons $=3$; so paramagnetic.

Number of unpaired electrons $=2$; so paramagnetic.
Q. 66 (A) - r, s ; (B) - p, q ; (C) - p ; (D) - p, q

2 unpair $\mathrm{e}^{-6} 6 \mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbital
$\mu=\sqrt{2 \times 4}=\sqrt{8}=2.83 \mathrm{BM}$.
$\left[\mathrm{Co}(\mathrm{CN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+1-} \mathrm{OC}_{2} \mathrm{H}_{5}$
$\mathrm{CN}^{-} \& \mathrm{NH}_{3}$ are strong field ligand
$\mathrm{CO}^{3+} \mathrm{d}^{6}$

$6-d^{2} \mathrm{sp}^{3}$ hybrid orbital
$\stackrel{3+}{\left[\mathrm{IrCl}_{6}\right]^{3-}} \mathrm{d}^{2} \mathrm{sp}^{3}$ No unpair e-
4+
$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Br}_{2} \mathrm{~d}^{2} \mathrm{sp}^{3}$ No unpair e
Q. 67 (A) - p, q, r; (B) - q, r, s ; (C) - p, q, r, s; (D) p, q.
(A) $\left[\mathrm{Clil}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+} \mathrm{SO}_{4}^{2-}$ and

III
$\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right) \mathrm{SO}_{4}\right]^{+} \mathrm{Cl}^{-}$ionisation isomerism.

Note : trans-form has a centre of symmetry and several planes of symmetry, but the cis-form has neither.
(B) Has total 12-isomeric forms including linkage (NO_{2} - ambidentate ligand), ionisation (exchange of $\mathrm{NO}_{2}{ }^{-}$and NO_{3}^{-}), geometrical isomers (cis- and trans-).
Compound is optically inactive as cis- as well as transforms possess at least one plane of symmetry.
(C) Exchange of NO_{2}^{-}and Cl^{-}gives rise to ionisation isomerism.

Linkage through either O - and N - gives rise to linkage isomerism.

mirror plane

Thus exists in two trans - and two cis-isomers and each of cis-isomers show optical isomerism.

(D)

cis -

Both cis- and trans - isomers have each a pair of optical isomers because of absence of any one of symmetry elements.
Q. 68
(A) $-\mathrm{p}, \mathrm{s}$; (B) $-\mathrm{p}, \mathrm{s} ;(\mathrm{C})-\mathrm{q} ;(\mathrm{D})-\mathrm{r}, \mathrm{q}$

2+ 2-
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4} \mathrm{dsp}^{2}$ square planer
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{dsp}^{2}$ square planer
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \mathrm{d}^{2} \mathrm{sp}^{3}$ octahedral
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \mathrm{sp}^{3} \mathrm{~d}^{2}$ octahedral
CN^{-}in strong field ligend but $\mathrm{H}_{2} \mathrm{O}$ is weak field ligand.
Q. 69 (A) -p ; (B) -p ; (C) -q ; (D) -r
en is bidentate
EDTA 4 is hexadentate
NH_{3} is monodentate
CO is monodentate
Q. 70
(A) - p,r,s;
(B) -t ;
(C) - q,r,t ;
(D) $-\mathrm{p}, \mathrm{r}, \mathrm{s}$

facial
(opticallyinactive)

trans
(optically inactive)

cis
(optically active)
$\left[\mathrm{Cr}(\mathrm{Ox})_{3}\right]^{3-}$ is non super imposable on its mirror image
$\left[\mathrm{RhCl}_{3}(\mathrm{Py})_{3}\right]$ show facial \& Meridonial form which are optically active
Q. 71 (A) -r ; (B) -r ; (C) -p ; (D) -q
$\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-} \mathrm{EAN}=26+2+4 \times 2=36$
$\left[\stackrel{3+}{\mathrm{CO}}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2} \mathrm{EAN}=27-3+5 \times 2+2=36$
$\mathrm{K}_{2}\left[\begin{array}{l}2+ \\ \left.\mathrm{Ni}(\mathrm{CN})_{4}\right]\end{array} \mathrm{EAN}=28-2+4 \times 2=34\right.$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ EAN $=29-2+4 \times 2=35$
Q. 72 (A) - q,s,t ; (B) - p,r ; (C) - p,r ; (D) - p, r

Para $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \mathrm{sp}^{3} \mathrm{~d}^{2} 4$ unpair e^{-}outer orbital complex

Dimagnetic $\left[\mathrm{NiF}_{6}\right]^{2-} \mathrm{d}^{2} \mathrm{sp}^{3} 0$ unpair e^{-}Inner orbital complex
Dimagnetic $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \mathrm{d}^{2} \mathrm{sp}^{3} 0$ unpair e^{-}Inner orbital complex
Dimagnetic $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \mathrm{~d}^{2} \mathrm{sp}^{3} 0$ unpair e ${ }^{-}$Inner orbital complex
Q. 73
(A) $-\mathrm{q} ;(\mathrm{B})-\mathrm{p}, \mathrm{q} ;(\mathrm{C})-\mathrm{r}, \mathrm{s} ;(\mathrm{D})-\mathrm{r}, \mathrm{s}$
$\left[{ }^{4+} \mathrm{MnCl}_{6}\right]^{2-} \mathrm{d}^{3}$ in weak field
$1 1 1 \longdiv { 3 d \quad \overline { 4 s } - \overline { 4 p } } -$
3 unpair e^{-}- - -
6-d ${ }^{2} \mathrm{sp}^{3}$ hybrid orbital
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \mathrm{d}^{2} \mathrm{sp}^{3} 1$ unpair e^{-}
$\left[\mathrm{CoF}_{6}{ }^{3-} \mathrm{sp}^{3} \mathrm{~d}^{2} 4\right.$ unpair e^{-}
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \mathrm{sp}^{3} \mathrm{~d}^{2} 4$ unpair e^{-}
Q. 74 (A) - p,q,r,s ; (B) - r, q ; (C) - p, q ; (D) - p,q,r,s
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{dsp}^{2} 1$ unpair $\mathrm{e}^{-} \mu=1.73 \mathrm{BM}$ Inner orbital complex

$\mathrm{K}_{2}\left[\stackrel{+1}{\mathrm{Cr}}(\mathrm{CN})_{4}\left(\mathrm{NH}_{3}\right)(\mathrm{N} \stackrel{+}{\mathrm{O}})\right] \mathrm{d}^{2} \mathrm{sp}^{3}$
1 unpair $\mathrm{e}^{-} \mu=1.73$
$\mathrm{K}_{4}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \mathrm{d}^{2} \mathrm{sp}^{3} 1$ unpair $\mathrm{e}^{-} \mu=1.73$
excitation of 1 unpair e^{-}to vacant d-orbital

$\left\|_{3 d}\right\|_{3}-\frac{-\overline{4 s}-\overline{4 p}}{}-\overline{4 d}$
$6-d^{2} s^{3}$ hybrid orbital
Q. 75 (A) - p, q; (B) - p, r; (C) - r, s

NUMERICAL VALUE BASED

Q. 1 [0]

Q. 2 [13]

All are bidentate except diethylenetriamine which is tridentate.

$$
\begin{array}{ll}
\text { Q. } 3 & {[6]} \\
& \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}
\end{array}
$$

Q. 4 [05]
$\mathrm{Na}_{2}[\mathrm{Cr}($ edta $)]-2 \mathrm{Na}^{+}$
$\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]-3 \mathrm{Na}^{+}$
Q. 5 [26]
Q. 6 [6] only
Q. $7 \quad(40+20) \mathrm{ml}=[60] \mathrm{ml}$
Q. 8 [4]
Q. 9 [4]

True statements : (i), (iii), (iv), (vii).
Q. 10 [6]
Q. 11 [6]
Q. 12 [3]

Correct options are (1), (3) \& (4).
Q. 13 [6]
Q. 14 [3]

Paramagnetic \times Inner orbital complexes are $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right.$ $\mathrm{Cl}_{3},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{NO}_{3}\right]_{2},\left[\mathrm{~V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$
Q. 15 [4]
Q. 16 [5]

Hapticity is the number of atoms of the pi donor ligand directly attached to the metal ion. In C5H5 the electron cloud is delocalized over all the five carbon atoms. Hence all the five carbon atoms are attached to the metal ion and make the hapticity 5 .
Q. 17 [4]

For $\mathrm{CoCl}_{2} \mathrm{Br}_{2} \rightarrow$ No. of G.I. $=0$
For $\left[\mathrm{Rh}(\mathrm{en})_{3}\right]^{3^{3+}} \rightarrow$ No. of G.I. $=0$
For $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Br}_{2}\right]^{+} \rightarrow$ No. of G.I. $=2$
For $\left[\mathrm{Pt}(\mathrm{en}) \mathrm{Cl}_{2}\right] \rightarrow$ No. of G.I. $=0$
For $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right] \rightarrow$ No. of G.I. $=2$
Hence sum of Geometrical isomers $=4$.
Q. 18 [4]
Q. 19 [5]
$\left[\mathrm{Fe}\left(\mathrm{n}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
Q. 20 [12]

It shows linkage, geometrical and optical isomerism.
(1) cis- $\mathrm{NO}_{2} / \mathrm{SCN}$
(2) cis-ONO / SCN Mirror images of
(3) cis- $\mathrm{NO}_{2} / \mathrm{NCS}$
(4) cis-ONO / NCS
(5) trans $-\mathrm{NO}_{2} / \mathrm{SCN}$ (9)
(6) trans-ONO / SCN(10)
(7) trans- $\mathrm{NO}_{2} / \mathrm{NCS}$ (11)
(8) trans-ONO/ NCS (12)

Q. 21 [4]

$\operatorname{Be}(4)=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$

Four orbital can be used by Be for bond formation.

KVPY

PREVIOUS YEAR'S

Q. 1
 (A)

$\mathrm{Co}^{+3}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} \mathrm{~s}^{0}$
NH_{3} is a strong field ligand

(ii) $\mathrm{Ni}^{+2}=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
NH_{3} is a strong field ligand

(iii) $\mathrm{Cr}^{+3}=[\mathrm{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$
$\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand

(iv) $\mathrm{Fe}^{+2}=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$
$\mathrm{H}_{2} \mathrm{O}$ is a weak field ligand.

So, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ will be diamagnetic.
Q. 2 (C)
$\left[\mathrm{Mn}^{+2}(\mathrm{CN})_{6}\right]^{-4}$
$\mathrm{Mn}^{+2} \rightarrow 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0} 4 \mathrm{p}$
CN^{-}is strong ligands so creates back paring effect of
($\mathrm{n}-1$) d obritals configuration

So, umpaired $\mathrm{e}^{-}=1$
$\mu=\sqrt{5(5+2)}$
$\mu=1.73$ B.M and in $\left[\mathrm{MnBr}_{4}\right]^{-2}$
Br is a weak ligands so no back pairng effect on ($\mathrm{n}-$

1) d orbital so, unpaired e^{-}is $=5$
$\mu=\sqrt{5(5+2)}=\sqrt{35}=5.92$ B.M
Q. 3 (A)

High spin

Q. 4 (C)

$\mathrm{Ni}(\mathrm{CO})_{4}$
$\mathrm{Ni}^{0}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

By effect of S.F.L.CO.

$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2} \quad \mathrm{Cr}+2=3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0} 4 \mathrm{p}^{0}$

Q. 5 (A)
$\left[\mathrm{MCl}_{4}\right]^{2-}$ Tetrahedral $=\mathrm{sp}^{3}$ hybridisation
M^{+2}
$\because \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M. $=3.83$
$\mathrm{n}=3$
Means configuration of $\mathrm{M}^{+2}=3 \mathrm{~d}^{7}$ So, $\mathrm{M}=3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}=$ ${ }^{27} \mathrm{Co}$
Q. 6 (A)
$\mathrm{Zn}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Zn}\left(\mathrm{OH}_{4}\right)\right]^{2-}+\mathrm{H}_{2}$
$2 \mathrm{gm}(1 \mathrm{~mole}) \mathrm{H}_{2}$ is given by 65.4 gm of Zn
1 gm is given by $\frac{65.4}{2} \mathrm{gm}$ of Zn
Q. 7 (B)

Coordination number $=6$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{Cl}^{-}$
Q. 8 (C)
$\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5}$

$$
1 \frac{1}{3 \mathrm{~d}} \frac{1}{1} \quad \overline{\mathrm{~s}} \quad-\frac{-}{4 \mathrm{p}}-
$$

$\stackrel{\ominus}{\mathrm{F}}$ is WFL so $\mu=5.92$ while NH_{3} is SFL \& pairing of electrons takes place so $\mu=1.73$
Q. 9 (B)

Q. 10 (C)

Energy of $d_{z^{2}}$ is greater than $d_{x y}$ in case of octahedral crystal field while energy of $d_{z^{2}}$ is less then $d_{x y}$ in case of tetrahedral splitting

[Spliting in octahedral crystal field]

[Spliting in tetrahedral crystal field]

Q. 11 (C)

Ni exist in zero oxidation state of its configuration is- its configuration is -

Co is strong ligand so pairing of electrons possible and configuration will be

- Number of unpaired electrons are zero hence it is diamagnetic in nature.

Q. 12 (B)

Total 3 geometrical isomers are possible -
(1)

(2)

(3)

Q. 13 (C)

$\left[\mathrm{ZCl}_{4}\right]^{2-}$ is 3.87
$x+(-1) 4=2 \quad u=\sqrt{n(n+2)}$
$\mathrm{x}=+4-2$
$x=+2$

| $\mathrm{Mn}^{+2} \rightarrow 4 \mathrm{~s}^{\circ} 3 \mathrm{~d}^{5}$ | 1 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{Ni}^{+2} \rightarrow 4 \mathrm{~s}^{\circ} 3 \mathrm{~d}^{8}$| $1 L$ | $1 L$ | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

$\mathrm{Co}^{+2} \rightarrow 4 \mathrm{~s}^{\circ} 3 \mathrm{~d}^{7}$| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Q. 14 (C)

$\left[\mathrm{MnBr}_{4}\right]^{-2}$
$x+(-1) 4=-2$
$\mathrm{x}=+2$
$\mathrm{Mn} \rightarrow 4 \mathrm{~S}^{2} 3 \mathrm{~d}^{5}$
$\mathrm{Mn}^{+2} \rightarrow 4 \mathrm{~s}^{\mathrm{o}} 3 \mathrm{~d}^{5}$

\section*{| \uparrow | \uparrow | \uparrow | \uparrow | \uparrow |
| :--- | :--- | :--- | :--- | :--- |}

We know that Br is weak field ligand so Hund's Rule is applicable then | | \uparrow | \uparrow | \uparrow | \uparrow |
| :--- | :--- | :--- | :--- | :--- |

Hybridization is $\rightarrow \mathrm{sp}^{3}$
and N_{0} of unpaired $=5$
electron.
Q. 15 (C)

Q. 16 (B)

optically active

optically active

Q. 17 (A)

$\left[\mathrm{NiCl}_{4}\right]^{-2} \mathrm{sp}^{3}$ hybrid, Tetrahedral
Q. 18 (B)
$-\mathrm{NO}_{2}$ is ambidentate ligand as it connect with metal by N or O atom.
Q. 19 (C)
(A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
d^{5} Low spin $\mathrm{n}=1 \quad \mu=\sqrt{2}$
(B) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
d^{6} High spin $n=4 \quad \mu=\sqrt{24}$
(C) $\left[\mathrm{MnF}_{6}\right]^{4}$
d^{5} High spin $n=5 \quad \mu=\sqrt{35}$
(D) $\left[\mathrm{NiCl}_{4}\right]^{2-}{ }_{\text {Tetrataectral }}$
d^{8} High spin $\mathrm{n}=2 \quad \mu=\sqrt{8}$
Q. 20 (A)
$\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \Rightarrow \mathrm{Fe}_{3}{ }^{+3}=\mathrm{d}_{5}=\mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,1}, \mathrm{eg}^{0,0}$
$\mathrm{K}_{3}\left[\mathrm{CoF}_{6}\right] \Rightarrow \mathrm{Co}^{+3}=3 \mathrm{~d}^{6} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}{ }^{2,1,1}, \mathrm{eg}^{1,1}$
Both are paramagnetic
Q. 21 (A)
$\mathrm{CoSO}_{4} \mathrm{Cl} .5 \mathrm{NH}_{3} \Rightarrow \mathrm{ON}=+3 \& \mathrm{CN}=6$

X \& Y show ionisation Isomerism.
Q. 22 (B)
$\mathrm{MX}_{4} \mathrm{Y}_{2}$ have 2 geometrical isomers both are achiral.

cis form

trans form
Q. 23 (D)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

fac
optically inactive

mer optically inactive
$\mathrm{GI}=2$
Total steroisomer $=2$

Trans (optically inactive)
G.I. $=2$

Optical isomer $=3$
stereo isomer $=3$
Q. 24 (C)

Complex Shape Hybridisation.
$\left[\mathrm{CdCl}_{4}\right]^{2-}$ Tetrahedral sp ${ }^{3}$
$\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$ Tetrahedral sp^{3}
$\left[\mathrm{PdCl}_{4}\right]^{2-}$ Square Planar dsp ${ }^{2}$
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ Tetrahedral sp^{2}
Q. 25 (A)

Q. 26 (B)
$\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]$
Ni^{2+}
$\mathrm{dmg}^{-1} \mathrm{SFL}$

No unpaired electron present in splited ' d ' obirtal
\therefore dimagnetic $\left(\mu_{\mathrm{B}}=0\right)$.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (4)

$[\mathrm{Mn}(\mathrm{CN}) 6]^{4-}$
$\mathrm{Mn}^{2+}=3 \mathrm{~d}^{5} \xrightarrow{\text { Strong field ligand }} \mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,1} \mathrm{eg}^{00}$
Hybridisation $=\mathrm{d}^{2} \mathrm{sp}^{3}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right.$
$\mathrm{Fe}^{3+}=3 \mathrm{~d}^{5} \xrightarrow{\text { Strong field ligand }} \mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,1} \mathrm{eg}^{00}$
Magnetic nature \rightarrow paramagnetic
Q. 2 (1)
$\left[\mathrm{FeF}_{6}\right]^{3-} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2} \& \mathrm{n}=5 ;\left[\mathrm{NiCl}_{4}\right]^{2-} \Rightarrow \mathrm{sp}^{3} \& \mathrm{n}=2$
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \Rightarrow \mathrm{dsp}^{2} \& \mathrm{n}=1 ;\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \Rightarrow \mathrm{d}^{2} \mathrm{sp}^{3}$ \& $\mathrm{n}=0$
Q. 3 (1)

Both are correct
Q. 4 [0]

Q. 5

Cis
optically active
having two stereoisomers $\mathrm{d} \& \ell$

Trans
optically inactive
Therefore total three stereoisomers are possible

Q. 6

$\left[\mathrm{FeCl}_{4}\right]^{2-}$ Contain Fe^{+2} in tetrahedral complex. Its configuration is $\mathrm{e}_{\mathrm{g}}{ }^{2,1} \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1}$ it have 4 unpaired electron in $\left[\mathrm{CO}(\mathrm{ox})_{3}\right]^{3-} \mathrm{Co}^{+3}$ have configuration $\mathrm{t}_{2 \mathrm{y}}{ }^{2,2,2} \mathrm{eg}^{0,0}$ $\mathrm{Mn} \mathrm{O}_{4}^{2-}$ have Mn in +6 oxidation state and configuration of Mn is $\mathrm{e}_{\mathrm{g}}{ }^{1,0} \mathrm{t}_{2 \mathrm{~g}}{ }^{0,0,0}$

Q. 7 (2)

Hydrogen bonded water molecule $=1$ Secondary valency $=4$
Q. 8 [3]
$\mathrm{K}_{3}\left[\mathrm{Cr}(\text { oxalate })_{3}\right]$
Chromium is in +3 oxidation state.
Number of unpaired electrons in Cr^{+3} will be 3 .
Q. 9 (4)
trans-[$\left.\mathrm{Ni} \mathrm{Br} r_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is

meridional - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ is

Q. 10 (2)

Chlorophyll is a coordination compound of magnesium.
Vitamin B- $_{12}$, cyanocobalamine is a coordination compound of cobalt.
Cisplatin is used as an anti-cancer drug and is a coordination compound of platinum.
Grubbs catalyst is a compound of Ruthenium.
Q. 11 [6]
$\mathrm{Fe}^{3+}+3 \mathrm{~K}^{+}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(A)

Secondary valency of Fe in ' A ' is 6 .

Q. 12 (1)

(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
(b) $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(c) $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(d) \quad cis- $\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$
Q. 13 (4)
(a) ${ }_{58} \mathrm{Ce} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{2} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{2}$

In complex $\mathrm{Ce} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{2} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{2}$
there is no unpaired electron so $\mu_{\mathrm{m}}=0$
(b) ${ }_{64} \mathrm{Gd}^{3+} \rightarrow[\mathrm{Xe}] 4 \mathrm{f}^{2} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{0}$
contain seven unpaired electrons so,
$\mu_{\mathrm{m}}=\sqrt{7(7+2)}=\sqrt{63}$ B.M.
(c) ${ }_{63} \mathrm{Eu}^{3+} \rightarrow\left[{ }_{54} \mathrm{Xe}\right] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{0} 6 \mathrm{~s}^{0}$
contain six unpaired electron
so, $\mu_{m}=\sqrt{6(6+2)}=\sqrt{48}$ B.M.
Hence, order of spin only magnetic movement $b>c>a$
Q. 14 [2] trans - $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ or trans-[Co($\left.\left.\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

As we know that ethylene diamine is a bidentate ligand and ammonia is a mono dentate ligand.
It means overall two ethylene diamine is required to replace the all neutral ligands (four ammonia) from the coordination sphere of this complex.
Q. 15 [4]
$\lambda_{\text {abostred }}=498 \mathrm{~nm}$ (given)
The octahedral spilitting energy
Δ_{0} or $E=\frac{h c}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{498 \times 10^{-9}}$
$=0.0399 \times 10-17 \mathrm{~J}$
$=3.99 \times 10-19 \mathrm{~J}$
$=4.00 \times 10-19 \mathrm{~J}$ (round off)
Q. 16 [6]
Q. 17 (4)
Q. 18 (4)
Q. 19 (3)
Q. 20 (2)
Q. 21 [0]
Q. 22 (1)
Q. 23 (3)
Q. 24 [2]
Q. 25 (3)
Q. 26 (2)
Q. 27 (2)
Q. 28 (4)
Q. 29 [2]
Q. 30 (4)
Q. 31 (1)
Q. 32 (4)
Q. 33 [2]
Q. 34 (4)
Q. 35 (2)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (C)

$\mathrm{K}-\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}: 3 \mathrm{~d}^{5}$ electron configuration after pairing of electrons for $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation it contains one unapaired electrons.
$\mathrm{L}-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}: 3 \mathrm{~d}^{6}$ electron configuration, $\mathrm{d}^{2} \mathrm{sp}^{3}$, diamagnetic.
$\mathrm{M}-\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-}: 3 \mathrm{~d}^{6}$ electron configuration, $\mathrm{d}^{2} \mathrm{sp}^{3}$, diamagnetic.
$\mathrm{N}-\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}: 3 \mathrm{~d}^{8}\right.$ electron configuration, $\mathrm{sp}^{3} \mathrm{~d}^{2}$, with two unpaired electrons paramagnetic.
$\mathrm{O}-\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]^{2-}: 5 \mathrm{~d}^{8}$ electron configuration, dsp^{2}, diamagnetic.
$\mathrm{P}-\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}: 3 \mathrm{~d}^{10}$ electron configuration, $\mathrm{sp}^{3} \mathrm{~d}^{2}$, diamagnetic.

Q. 2 (6)

m moles of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}=0.01 \times 30=0.3$.
\Rightarrow mmole of $\mathrm{Cl}^{-}=0.3 \times 2=0.6$
\Rightarrow mmole of $\mathrm{Ag}^{+}=$mmoles of Cl^{-}
$\Rightarrow 0.1 \times \mathrm{V}=0.6$
$\Rightarrow \mathrm{V}=6 \mathrm{~mL}$.
Q. 3 (D)
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}_{3}$
$=$ diamminetetraaquacobalt (III) chloride
Q. 4 (C)
$\left[\mathrm{NiCl}_{2}\left\{\mathrm{PEt}_{2} \mathrm{Ph}\right\}\right]$ contains Ni^{2+} with electronic configuration
$\mathrm{Ni}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$

In high spin state, it is paramagnetic, sp^{3} hybridised, tetrahedral.
In low spin state, it is diamagnetic, dsp^{2}, square planar.
Q. 5 (B)
$\mathrm{P}=\left[\mathrm{FeF}_{6}\right]^{3-} \quad$ ox. no. of $\mathrm{Fe}=+3, \quad$ configuration : - $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
As F^{-}is weak ligand, pairing does not take place. so it has 5 unpaired electron
$\mathrm{Q}=\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ox. no. of $\mathrm{V}=+2$, configuration $3 \mathrm{~d}^{3}$ $4 \mathrm{~s}^{0}$
It has 3 unpaired electrons.
$\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, ox. no. of $\mathrm{Fe}=+2$, configuration $3 \mathrm{~d}^{6}, 4 \mathrm{~s}^{0}$
As $\mathrm{H}_{2} \mathrm{O}$ is weak ligand, pairing does not take place, so it has 4 unpaired electron
\Rightarrow order of spin only magnetic moment
$\Rightarrow \quad \mathrm{Q}<\mathrm{R}<\mathrm{P}$ so, answer is (B).
Q. 6 (BD)
(A) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right) \mathrm{Cl}$, both compounds will not show either structural or stereoisomerism.
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{+}, \mathrm{Ma}_{4} \mathrm{~b}_{2}$ type (octahedral), Ma Mb_{2} type (square planar) and both will show geometrical isomerism.
(C) $\left[\mathrm{CoBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}, \mathrm{Ma}_{2} \mathrm{~b}_{2}$ type (tetrahedral), $\mathrm{Ma}_{2} \mathrm{~b}_{2}$ (square planar).
(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$ both will show ionisation isomerism.
Q. 7 (8)

Q. $8 \quad \mathrm{P}-3, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-2$
(P) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \rightarrow \mathrm{Cr}^{+3}$ is d^{3}. It is paramagnetic and it shows cis-trans isomerism.
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Ti}^{+3}$ is d^{1}. It is paramagnetic and it show ionisation isomerism.
(R) $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3} \rightarrow \mathrm{Pt}^{+2}$ is d^{8}. But this complex is square planar and all electron are paired. So it is diamagnatic. It exhibit ionisation isomerism.
(S) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3} \rightarrow \mathrm{Co}^{+3}$ is d^{6}. Since ligands are strong, so electron are paired. it is diamagnetic.
It exhibit cis-trans isomerism.
(4)
SCN^{-}is weak field effect (WFE) ligand whereas
CN^{-}is strong field effect (SFE) ligand.

Spin only magnetic moment $=\sqrt{5(5+2)}=\sqrt{35} \mathrm{BM}$

$$
\begin{gathered}
{ }_{26} \mathrm{Fe}^{+3} \text { in } \\
{\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}}
\end{gathered}=[\mathrm{Ar}]
$$

Spin only magnetic moment $=\sqrt{1(1+2)}=\sqrt{3}$ BM

Difference $=\sqrt{35}-\sqrt{3} \simeq 4$
Q. 10 (3)
$\left[\mathrm{Fe}\left(\mathrm{CH}_{3} \mathrm{CO}\right) \mathrm{Br}(\mathrm{CO})_{2}\left\{\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$

CO Ligand \longrightarrow two $\mathrm{Fe}-\mathrm{C}$ bond

Q. 11 (6)

All the complexes given show cis-trans isomerism
$\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right) \mathrm{Cl}_{2}\right]^{+}$

$\left[\left(\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-}\right.$

$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$

$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{-}$

$\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}$

$\left(\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+}$

Q. 12 (B)

CO and NH_{3} are strong ligands which compel Ni and Co^{3+} to make electrons paired. Hence,
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right] \rightarrow$ Diamagnetic
$\left[\mathrm{NiCl}_{4}\right]^{2-} \rightarrow$ Paramagnetic
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \rightarrow \mathrm{Dia}$
$\mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right] \rightarrow$ Para
$\mathrm{Na}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Dia}\left(\mathrm{O}_{2}{ }^{2-}\right.$-is diamagnetic, MOT)
$\mathrm{CsO}_{2} \rightarrow \mathrm{Para}\left(\mathrm{O}_{2}^{-}\right.$is para according to MOT)

Q. 13 (5)

Q. 14 (A)

Q. 15 (B,C)
(A) $\left[\mathrm{Fe}\left(\mathrm{CO}_{5}\right)\right] \&\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ complexes have $18-$ electrons in their valence shell.
(B) Carbonyl complexes are predominantly low spin complexes due to strong ligand field.
(C) As electron density increases on metals (with lowering oxidation state on metals), the extent of synergic bonding increases. Hence M-C bond strength increases
(D) While positive charge on metals increases and the extent of synergic bond decreases and hence $\mathrm{C}_{\mathrm{i}} \mathrm{VO}$ bond becomes stronger.
Q. 16 (6.00)

Number of cis $(\mathrm{Cl}-\mathrm{Mn}-\mathrm{N})=6$
Q. 17 (A,C)
(A) $\left[\mathrm{FeCl}_{4}\right]^{-}$

$\left[\mathrm{FeCl}_{4}\right]^{-}$is sp^{3} hybridised and has tetrahedral geometry with 5 unpaired electrons.
(B) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$has three geometrical isomers.

(C) $\left[\mathrm{FeCl}_{4}\right]^{-}$

Number of unpaired electrons (n)=5
Spin only magnetic moment $=\sqrt{n(n+2)}$ B.M. $=5.92$ B.M.
$\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$

Number of unpaired electrons (n) $=0$
Spin only magnetic moment $=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M.
$=0$
(D) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$

$\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and has octahedral geometry with 0 unpaired electron.
Q. 18 (A,B,C)

Paramagnetic compound (X) are attracted towards magnetic field and the pan is deflected downwards. While the Diamagnetic compound (X) are repelled by magnetic field and pan is deflected upward.
(A) $\mathrm{X} \Rightarrow \mathrm{H}_{2} \mathrm{O} \rightarrow$ Diamagnetic (correct)
(B) $\mathrm{X} \Rightarrow \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](\mathrm{s}) \rightarrow$ Diamagnetic (correct) Here $\mathrm{Fe}^{2+}+$ Strong field ligand $\rightarrow 3 \mathrm{~d}^{6} \Rightarrow\left[\mathrm{t}_{2} \mathrm{~g}^{6}, \mathrm{eg}^{0}\right]$
(C) $\mathrm{X} \Rightarrow \mathrm{O}_{2} \rightarrow$ Paramagnetic (correct)

Here $\mathrm{O}_{2}(\mathrm{~g})$ is paramagnetic due to two-unpaired electrons present in π^{*} (antibonding orbitals).
(D) $\mathrm{X} \Rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\ell) \rightarrow$ Diamagnetic (Incorrect) It is due to presence of 0 unpaired electrons.

Q. 19 A, B ,D

(A)
$\left[\mathrm{FeCl}_{4}\right]^{-}$
$\mathrm{Fe} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Fe}^{+3} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{0}$
Cl^{-}is W.F.L. and does not pair up the unpaired electron of central metal atom.

$\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
$\mathrm{Fe} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Fe}^{2-} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
$\therefore \mathrm{Fe}^{2-}\left(\mathrm{d}^{10}\right)$ in $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$

(B)
$\left[\mathrm{CO}(\mathrm{CO})_{4}\right]-$
$\mathrm{CO} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$
$\mathrm{CO}^{-1} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

$\therefore \mathrm{Co}^{-}\left(\mathrm{d}^{10}\right)$ in $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$| 1L | $1 L$ | $1 L$ | $1 L$ | $1 L$ |
| :--- | :--- | :--- | :--- | :--- |

$\left[\mathrm{CoCl}_{4}\right]^{2-}$
$\mathrm{Co} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$
$\mathrm{Co}^{+2} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{0}$
Cl^{-}is W.F.L. and does not pair up the unpaired electron of central metal atom.

$\therefore \mathrm{Co}^{2+}\left(\mathrm{d}^{7}\right)$ in $\left[\mathrm{CoCl}_{4}\right]^{2-}$| | 1L | $1 L$ | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

(C)
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{Ni} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
$\mathrm{Ni}^{0} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$

(C)
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\mathrm{Ni}^{+2} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
$\mathrm{Ni}^{+2} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
CN^{-}is S.F.L. and pair up the unpaired electron of central metal atom.
$\therefore \mathrm{Ni}^{0}{ }^{\left(\mathrm{d}^{10}\right)}$ in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\therefore \mathrm{Ni}^{0}\left(\mathrm{~d}^{8}\right)$ in $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

(D) $\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$
$\mathrm{Cu} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
$\mathrm{Cu}^{+1} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0}$
$\therefore \mathrm{Cu}^{+1}\left(\mathrm{~d}^{10}\right)$ in $\left[\mathrm{Cu}(\mathrm{py})_{4}\right]^{+}$

$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$
$\mathrm{Cu} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
$\mathrm{Cu}^{+1} \longrightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{0}$
$\mathrm{CN}-$ is S.F.L. and pair up the unpaired electron of central metal atom.
$\therefore \mathrm{Cu}^{+1}\left(\mathrm{~d}^{10}\right)$ in $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$

Q. 20 (6)

Isomers
(I) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2} \Rightarrow$ G.I. $=2$
(II) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2} \Rightarrow$ G.I. $=2$
(III) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{BrCl}\right] \mathrm{Br} . \mathrm{Cl} \Rightarrow$ G.I. $=2$

I, II, III are ionisation isomers of each other, each having 2 geometrical isomers.

Total possible isomers will be 6
Q. 21 (A)
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
$\mathrm{Cr}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{3}$
In presence of NH_{3} ligand \square eg

\section*{| 1 | 1 | 1 |
| :--- | :--- | :--- |
| t_{28} | | |}

Number of unpaired electrons $=3$
$\mu=\sqrt{n(n+2)}$ B. M.
$\mu=\sqrt{3(3+2)}$ в.М.
$\mu=\sqrt{15} \quad$ В.М.
$\Rightarrow 3.87$ B.M.
$\left[\mathrm{CuF}_{6}\right]^{3-}$
$\mathrm{Cu}^{3+} \Rightarrow[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
In presence of F^{-}Ligand

$$
\mathrm{Cu}^{3+} \Rightarrow \begin{array}{ll}
1 / 1 \\
\hline 1 / 1 / 1 \\
\hline 1
\end{array}
$$

Number of unpaired electrons $=2$

$$
\begin{aligned}
& \mu= \sqrt{\mathrm{n}(\mathrm{n}+2)} \text { В.М. } \\
& \mu=\sqrt{2(2+2)} \Rightarrow \sqrt{8} \text { В.М. } \\
& \Rightarrow 2.84 \text { В.М. }
\end{aligned}
$$

Mettalurgy

EXERCISES

ELEMENTARY

Q. 1 (1)

Mineral is called an ore is a metal can be economically obtained from it.

Q. 2 (4)

Flux is added to remove impurities.

Q. 3 (2)

All mineral are not ore.
Q. 4 (3)
Q. 5 (4)
Q. 6 (3)
Q. 7 (1)
$N a$ is alkali metal highly reactive. Hence present in combined state.
Q. 8 (4)
Q. 9 (2)

Sulphide ore is concentrated by Froath floatation process.

Q. $10 \quad$ (2)

 Plam oil function \longrightarrow frother.
Q. 11 (2)

 Heating below it melting point \& in absence of air.
Q. 12 (1)

Fe is more reactive than Cu .
Q. 13 (4)

Ag is less reactive, So it is found in native state in nature.
Q. 14 (1)
Q. 15 (3)

Chemical separation or Leaching. In this powdered ore is treated with a suitable reagent which can dissolve the ore but not the impurities.
Q. 16 (3)

Froth floatation because it is sulphide ore (ZnS)
Q. 18 (1)
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
Heating the ore in absence of air is calcination.
Q. 19 (2)

Smelting is a process of reducing metal oxide to metal by means of coke or CO.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
$\mathrm{Fe}_{2}^{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

Q. 20 (1)

Q. 21 (3)

Flux is added during smelting it combines with infusible gangue present in the ore to form a fusible mass known as slag.
Flux + Gangue \rightarrow Slag
Q. 22 (2)
Q. 23 (2)

Al forms thin filmofoxide
$\Rightarrow \mathrm{So} \mathrm{Al}$ becomes possive in nitric acid.

Q. 24 (3)

Van Arkel method $T i$ and $Z r$ are refined by this method. It is used for obtaining ultra pure metals.
Q. 25 (1)

Metals are electropositive elements because they have tendency to loose e^{-}and forms + ve ions $\mathrm{Na} \rightarrow \mathrm{Na}^{+}+e^{-}$

Q. 26 (2)

Q. 27 (3)

Zone refining is employed for preparing extremely pure metals.
It is based on the principle that when a molten solution of the impure metal is allowed to cool the pure metal crystallises out while the impurities remain in the melt. Ex: Semiconductors like Si , Ge and Ga are purified by this method.
Q. 28 (2)
Q. 29 (2)
Q. 30 (3)

Sodium \rightarrow Highly reactive metal

Q. 31 (1)

In thermite process a mixture of aluminium powder and ferricoxide in the rate of $1: 3$ is used.

Q. 32 (2)

Blister copper $\longrightarrow \mathrm{Cu}$ with 2% Impurity.
Q. 33 (2)
$\underset{\downarrow}{\mathrm{Zn}}+2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-} \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2}+2 \mathrm{Ag}$
reducing agent

Q. 34 (2)

Carbonates ore
Siderire \& malachite.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (1)

Calamine is ZnCO_{3}.
Q. 2 (3)

Aluminothermite process, Al act as reducing agent.

$$
\begin{aligned}
& \text { e.g. } \mathrm{Mn}_{3} \mathrm{O}_{4(\mathrm{~s})}+8 \mathrm{Al} \rightarrow \mathrm{Mn}_{(\ell)}+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& \mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{Al} \rightarrow \mathrm{Cr}_{(\ell)}+\mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

Q. 3 (1)

Hydrometallurgy
Q. 4 (2)

Zinc blende (ZnS) ; copper glance $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$; Galena (PbS).
Therefore, (B) option is correct.
Q. 5 (4)
(4) Feldspar is $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$. beryl is $\mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}$.
Q. 6 (2)

Some transition metal can form poly nuclear metal carbonyls also.

Q. 7 (2)

Carnalite ($\mathrm{KCl} . \mathrm{MgCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$)
It does not contain Ca .

Q. 8 (1)

Sea water contains $0.13 \% \mathrm{Mg}$ as salt and extracted by Dow's process and also from ore magnesite found in earth crust.

Q. 9 (1)

NaCl and CaCl_{2} both being ionic compounds ionise to give ions which lowers the melting point and increase the conductivity of the mixture.
Q. 10 (2)
(1) Calamine $\rightarrow \mathrm{ZnCO}_{3}$ Siderite $\rightarrow \mathrm{FeCO}_{3}$
(2) Argentite $\rightarrow \mathrm{Ag}_{2} \mathrm{~S} \quad$ Cuprite $\rightarrow \mathrm{Cu}_{2} \mathrm{O}$
(3) Zinc blende \rightarrow Zns \quad Pyrite \rightarrow Sulphide
(4) Malackite (green) $\mathrm{CuCO}_{3} \cdot \mathrm{Ca}(\mathrm{OH})_{2}$

Azurite $2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
(Blue)
Q. 11 (3)

Siderite FeCO_{3}
Q. 12 (1)
Q. 13 (1)

German silver in an alloy of Cu, Ni and Zn . It does not contain silver.
Q. 14 (1)

Fool's gold is Iron pyrite.
Q. 15 (4)

Enthalpy of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$
is very high and it can not be changed into Al by the use of C .
Q. 16 (A)

Froth floatation is an example of adsorption process.
Q. 17 (C)
$\mathrm{Ti}_{\text {(impulse) }}+2 \mathrm{I}_{2} \xrightarrow{250^{\circ} \mathrm{C}} \mathrm{TiI}_{4} \xrightarrow{1400^{\circ} \mathrm{C}}$
Ti (pure) $+2 \mathrm{I}_{2}$
if Van-Arel process
Q. 18 (2)

Due to volatile nature.
Q. 19 (3)

Process is known as self reduction or autoreduction.
Q. 20 (3)

Sulphide ore is roasted in presence of excess of air or O_{2} below its melting point to convert into the oxide and to remove the impurities of $\mathrm{S}, \mathrm{P}, \mathrm{Sb}$ etc., as their volatile oxides. In some cases roasting of certain sulphide ores provide directly the metals.
Q. 21 (C)

Van-Arkel process
Q. 22 (2)

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{2} \xrightarrow{2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})} \\
& \text { 2 } \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \xrightarrow{\rightarrow} \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{~s}) \\
&+2 \mathrm{NaHCO}_{3}(\mathrm{aq}) \\
& \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{~s}) \xrightarrow{1470 \mathrm{~K}} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

Low grade sulphide ores are concentrated by froth floatation process and it is based on the fact that gangue and ore particles have different degree of wetability with water and pine oil.
Q. 24 (4)

Carnalite
$\mathrm{KCl} . \mathrm{Mg} \mathrm{Cl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$

Mg and Cl_{2}
Q. 25 (C)
(A) Calamine $\rightarrow \mathrm{ZnCO}_{3}$

$$
\text { Siderite } \rightarrow \mathrm{FeCO}_{3}
$$

(B) Argentile $\rightarrow \mathrm{Ag}_{2} \mathrm{~S}$

Cuperite $\rightarrow \mathrm{Cu}_{2} \mathrm{~S}$
(C) Zinc blende $\rightarrow \mathrm{ZnS}$

Iron pyrite $\rightarrow \mathrm{FeS}_{2}$
(D) Malachite $\rightarrow \mathrm{CuCO}_{2} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

Azurite $\rightarrow \mathrm{CuCO}_{3} .2 \mathrm{Cu}(\mathrm{OH})_{2}$
Q. 26 (B)

Self reduction process
$\mathrm{Cu}_{2} \mathrm{~S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{SO}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
Q. 27 (C)
Q. 28 (2)
$\mathrm{ZnS}+4 \mathrm{NaCN} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+\mathrm{Na}_{2} \mathrm{~S}$
$\mathrm{PbS}+\mathrm{NaCN} \rightarrow$ No such complex formation.
Q. 29 (3)

Carbonate ores are calcined in absence of air to obtain the metal oxides.
Q. 30 (2)

Magnete seperation $\rightarrow \mathrm{FeCr}_{2} \mathrm{O}_{4}$
froath floatation $\rightarrow \mathrm{Ag}_{2} \mathrm{~S}$
gravity separation $\rightarrow \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{2}$

Q. 31 (4)

Smelting is not a process of conc ${ }^{\text {n }}$ of ore.

Q. 32 (2)

An infusible acidic impurity is removed by reacting with basic oxide, e.g., SiO_{2} forming fusible slag. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} ; \mathrm{SiO}_{2}$ (acidic oxide) +CaO (basic oxide) $\rightarrow \mathrm{CaSiO}_{3}$ (slag).
Q. 33 (3)
Q. 34 (A)
Q. 35 (2)
$\mathrm{PbS}+\mathrm{NaCN} / \mathrm{KCN} \rightarrow$ No. reaction
$\mathrm{ZnS}+\mathrm{NaCN} / \mathrm{KCN} \rightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}+\mathrm{S}^{2-}+4 \mathrm{Na}^{+} / 4 \mathrm{~K}^{+}$
Q. 36 (2)
(Y) PbS reduces PbO to Pb ; it is called self reduction.
Q. 37 (B)

Palm oil function as frother. It decreases the surface tension of the total solution, by which the formation of froth becomes easier.
Q. 38 (1)

Sodium ethyl xanthate acts as collector.
Q. 39 (2)
Q. 40 (2)
Q. 41 (2)
$\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (slag)
Q. 42 (3)
$\mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{NaCN} \xlongequal{\text { Air }} 2 \mathrm{AgCN}+\mathrm{Na}_{2} \mathrm{~S}$
$4 \mathrm{Na}_{2} \mathrm{~S}+5 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{NaOH}+2 \mathrm{~S}$.
Q. 43 (1)
$\mathrm{FeCr}_{2} \mathrm{O}_{4}$ due to magnetic nature is separated by magnetic seperation
Q. 44 (2)
$4 \mathrm{Ag}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$(soluble complex) $+4 \mathrm{OH}^{-}$
$2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Zn} \longrightarrow 2 \mathrm{Ag}+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
Q. 45 (3)

Cathode : $\mathrm{Al}^{3+}($ melt $)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$
Anode $: \mathrm{C}+\mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}+2 \mathrm{e}^{-} \quad ; \mathrm{C}+2 \mathrm{O}^{2-}$
(melt) $\longrightarrow \mathrm{CO}_{2}+4 \mathrm{e}^{-}$
Q. 46 (3)
(i) $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{FeS} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeO}$
(ii) $\mathrm{AsFeCrO}_{4}$ is magnetic in nature.
(iii) True
(iv) $\underline{\text { Cassiterite }} \Rightarrow \mathrm{SnO}_{2}$

Rutile $\Rightarrow \mathrm{TiO}_{2} \quad$ True
Q. 47 (4)

Benficiation \rightarrow concentration
sulphide ore \rightarrow Froth floatation process
Q. 48 (B)
Q. 49 (D)
Q. 50 (1)

Bessermerisatioin process is used for Fe and Cu
Q. 51 (1)

For a reduction process the change in the free energy, $\Delta \mathrm{G}$ must be negative and to make $\Delta \mathrm{G}$ negative temperature should be high enough so that $\mathrm{T} \Delta \mathrm{S}>\Delta \mathrm{H}$.
Q. 52 (4)

When the oxide undergoes a phase change, there will be an increase in the entropy of the oxide.
(2) It is true statements, $\mathrm{HgO} \xrightarrow{\Delta} \mathrm{Hg}+1 / 2 \mathrm{O}_{2}$
(3) For a reduction process the change in the free energy, $\Delta \mathrm{G}^{0}$ must be negative and to make $\Delta \mathrm{G}^{0}$ negative temperature should be high enough so that $T \Delta S^{0}>\Delta H^{0}$.

Q. 53 (1)

Reduction of oxides of Mn, Cr etc., by electropositive aluminium metal is called as alumino thermite process.

Q. 54 (3)

Mercury from cinnarbar (HgS)
(Auto reductant and self reduction)
$\left(\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{PbS}, \mathrm{HgS}\right)$
Q. 55 (4)

Aluminium oxide could be extracted by electrolysis phenomenon.
Q. 56 (3)

Cu and Ag are found in anode mud.
Q. 57 (1)
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$;
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$.
Q. 58 (1)

Matte is obtained in blast furnace and that contains mostly $\mathrm{Cu}_{2} \mathrm{~S}$ and FeS . It is transferred to bessemer converter where self reduction takes place according to the following reactions.
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$;
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$.
Q. 59 (3)

As PbS on self reduction with PbO and PbSO_{4} gives metallic lead.
Q.No. 60 to $\mathbf{Q . 6 2}$ are based on following reactions
(I) $\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{NaOH}+$ air \longrightarrow (A) $+\mathrm{Fe}_{2} \mathrm{O}_{3}$
(II) (A) + (B) $\longrightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(III) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{X} \xrightarrow{\Delta} \mathrm{Cr}_{2} \mathrm{O}_{3}$
(IV) $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Y} \xrightarrow{\Delta} \mathrm{Cr}$
Q. 60 (A)
$\mathrm{A} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}$
$\mathrm{B} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Ans. (A)
Q. 61 (A)
$\mathrm{X} \rightarrow \mathrm{CO}$
$\mathrm{Y} \rightarrow \mathrm{Al}$
Q. 62 (C)
Q. 63 (2)

Zone refining is based on the principle of fractional crytallisation.
Q. 64 (4)

Sulphide ore of $\mathrm{Hg}, \mathrm{Cu}, \mathrm{Pb}$ are heated in air, a part of these is changed in to oxides or sulphate that then react with the remaining part of the sulphide ore to give its metal and SO_{2}. This is called self reduction, auto reduction or air reduction method.

Q. 65 (3)

Aluminium is extracted by electrolytic reduction of mixture of molten $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Na}_{3} \mathrm{AlF}_{6}+\mathrm{CaF}_{2}$.
Due to very high energy of dissociation of $\mathrm{Al}_{2} \mathrm{O}_{3}$, the reduction at such high temperature will give carbide in place of metallic Al according to the following reaction. $2 \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{C} \xrightarrow{\Delta} \mathrm{Al}_{4} \mathrm{C}_{3}+3 \mathrm{CO}_{2}$.
Q. 66 (3)
$\mathrm{Na}_{3}\left[\mathrm{AlF}_{6}\right] \longrightarrow 3 \mathrm{NaF}+\mathrm{AlF}_{3}$
NaF and AlF_{3} both are ionic compounds and so ionise to give ions. This increases the electrical conductivity and lowers the melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$.

At cathode : Al^{3+} (melt) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$.
At anode $: \quad \mathrm{C}(\mathrm{s})+\mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{e}^{-}$; $\mathrm{C}(\mathrm{s})+2 \mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{e}^{-}$.
Q. 67 (1)

Si and Ge is used for semiconductors are required to be high purity and hence purified by zone refining.
Q. 68 (2)

Reactive metal can not be reduced by carbon hence process of electrolysis is used.
Q. 69 (C)

Cathode (reduction) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$.
Q. 70 (1)
Q. 71 (2)
Q. 72 (4)

Electrolyte contains PbSiF_{6} containing $8-12 \%$ of $\mathrm{H}_{2} \mathrm{SiF}_{6}$.
Q. 73 (D)

Zone refining method is based on the principle that an impure molten metal on gradual cooling will deposit crystals of the pure metal, while the impurities will be left in the remaining part of the molten metal.
Q. 74 (1)
Q. 75 (1)

CaO and $\mathrm{K}_{2} \mathrm{O}$ can not be reduced by C .
Q. 76 (C)

Al-powder reduces the metallic oxides to metal.
$3 \mathrm{MnO}_{2}+4 \mathrm{Al} \xrightarrow{\Delta} 3 \mathrm{Mn}+2 \mathrm{Al}_{2} \mathrm{O}_{3}$.
Q. 77 (2)

The process mention is rxn is known as Mc. Arthur forest
Method :
$\mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \rightarrow 2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+2 \mathrm{Na}^{+}+\mathrm{S}_{2}{ }^{2-}$
$\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Zn} \rightarrow\left(\mathrm{Zn}(\mathrm{CN})_{4}\right)^{2-}+2 \mathrm{Ag} \downarrow$

Q. 78 (3)

By cupellation
it is used for the removal of Pb
from Ag and Au
Q. 79 (4)
Q. 80 (C)

Blister copper is 98% pure Cu
Q. 81 (3)

Iron obtained from blast furnace is pig iron
Q. 82 (2)

Thermal decomposition : $\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO} \frac{3}{2}$
$\left[\mathrm{Ni}\left(\mathrm{COl}_{4}\right)\right] \xrightarrow{150-180^{\circ}} \mathrm{Ni}(\mathrm{s})+4(\mathrm{i})$
(pure)
Q. 83 (D)
Q. 84 (3)

The solidified copper obtained after bessemerisation is impure and contains $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Au}$ etc., as impurity. It has blistered like appearance due to the evolution of SO_{2} and so it is called blister copper.
Q. 85 (3)
$\mathrm{Ni}+4 \mathrm{CO} \xrightarrow{\mathrm{T}_{1}} \mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{\mathrm{~T}_{2}} \mathrm{Ni}+4 \mathrm{CO}$
$\mathrm{T}_{1}=50^{\circ} \mathrm{C}$
$\mathrm{T}_{2}=230^{\circ} \mathrm{C}$
Q. 86 (3)
$\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$ (Slag) (In extraction of Cu) $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$ (In extraction of Fe)
Q. 87 (B)

Q. 88 (3)

It is obtained by electrolytic reduction of molten anhydrous $\mathrm{KCl} . \mathrm{MgCl}_{2}$ (other methods are not economical/ feasible for the extraction of Mg metal).
Q. 89 (3)

Electrolyte used is $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Na}_{3} \mathrm{AlF}_{6}+\mathrm{CaF}_{2}$
Q. 90 (4)
Q. 91 (B)
Q. 92 (2)

$$
\mathrm{Ni}+4 \mathrm{CO} \rightarrow \underset{\text { volatile }}{\mathrm{Ni}(\mathrm{CO})_{4}}
$$

Q. 93 (1)

The Hooper process is a process for the electrolytic refining of aluminium. Impure Al forms the anode and pure Al forms the cathode of the Hooper's cell which contains three liquid layers. The bottom layer is molten impure Al , the middle is a fused salt layer containing sodium fluoride, aluminum fluoride and barium fluoride, and the top layer is pure Al. At the anode (bottom layer), Al passes with solution as aluminium ion $\left(\mathrm{Al}^{3+}\right)$, and at the cathode (top layer), these ions are reduced to the pure metal. In operation, molten metal is added to the bottom of the cell and pure aluminium is drawn off the top.

At anode : $\quad \mathrm{Al} \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-}$
At cathode : $\quad \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}$.

Q. 94 (3)

Anode mud obtained in electrolytic refining of lead contains, $\mathrm{Sb}, \mathrm{Cu}, \mathrm{Ag}$ and Au .
Therefore, (C) option is correct.
Q. 95 (4)

Anode mud contains the impurity of Au only.
Q. 96 (4)

Due to low discharge potential of Na^{+}, it will deposited first.
Q. 97 (3)
$\mathrm{Na}_{2} \mathrm{SO}_{4} \Rightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$
$\mathrm{SO}_{4}{ }^{2-}$ will not oxidised as
S is an maximum O.S.,
In this oxidation and reduction process will happen with $\mathrm{H}_{2} \mathrm{O}$ only and H_{2} and O_{2} would produced.

Q. 98 (1)

Slag is lighter and Lower melting than metal.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)

Carnallite is the important ore of aluminium and it has chemical composition $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
Q. 2 (D)

Dolomite is mixed carbonate of calcium and magnesium i.e. $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$.

Q. 3 (C)

It is used to separate haematite ore as it is attracted by electromagnet.
Q. 4 (C)

Ore bauxite, $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ of aluminium occurs as oxide ore in nature.
Q. 5 (D)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{C}($ red hot $) \longrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{Ni}(\mathrm{s})+$
$4 \mathrm{CO}(\mathrm{g}) \xrightarrow{50^{\circ} \mathrm{C}}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right](\mathrm{g}) ;$
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right](\mathrm{g}) \xrightarrow{200^{\circ} \mathrm{C}} \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})$. So Mond process is used for the purification of nickel.
Q. 6 (C)
$\mathrm{Al}_{2} \mathrm{O}_{3}$ (bauxite) +2 NaOH (aq) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \xrightarrow{\text { leaching }}$ $2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})$.

Q. 7 (A)

The process is truly adsorption as gangue particles are wetted with water and sulphide ore particles are wetted with pine oil.

Q. 8 (D)

Options (A), (B) and (C) comprise the froth floatation process.
Q. 9 (A)

As their is difference in the densities of the gangue and ore particles (i.e. $\mathrm{Fe}_{2} \mathrm{O}_{3}$).
Q. 10 (B)

For examples $\mathrm{SiO}_{2}+\mathrm{CaO} \longrightarrow \mathrm{CaSiO}_{3}$ (metal silicate) or $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$.
Q. 11 (D)

Potassium or sodium ethyl xanthate get attached with the particle of the sulphide ore and thus make them water repellant i.e. hydrophobic.

Q. 12 (D)

Ore is heated below its melting point in a reverberatory furnace in the presence of air to convert it into its oxides. It removes easily oxidisable volatile impurities like arsenic as $\mathrm{As}_{2} \mathrm{O}_{3}$, antimony as $\mathrm{Sb}_{2} \mathrm{O}_{3}$ and sulphur as SO_{2}. Roasting is an exothermic process; once started it does not require additional heating.

Q. 13 (D)

In Hoope's electrolytic cell, there are three different layers of liquids; upper most layer of molten pure aluminium, middle one of the fluorides of $\mathrm{Na}^{+}, \mathrm{Ba}^{2+}$ and Al^{3+} and bottom most layer of molten impure aluminium. To make the lower most layer heavier silicon and copper are added.
Q. 14 (B)
$4 \mathrm{NaCN}+\mathrm{Ag}_{2} \mathrm{~S} \xrightarrow{\mathrm{O}_{2}} 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S}$.
Q. 15 (A)

The free energy change that occurs when 1 mol of common reactant (in this case O_{2}) is used may be plotted graphically against temperature for a number of reactions. This is called an Ellingham diagram.
Q. 16 (C)

At lower temperature following reactions occur in blast furnace.
$3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}$;
$\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \longrightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2}$;
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}$
Q. 17 (C)

The Gibb's free energy of most sulphides are greater than that for CS_{2}. In fact, CS_{2} is an endothermic compound. Therefore, the $\Delta_{\mathrm{f}} \mathrm{G}^{0}$ of $\mathrm{M}_{\mathrm{x}} \mathrm{S}$ is not compensated. So reduction of $M_{x} S$ is difficult. Hence it is common practice to roast sulphide ores to corresponding oxides prior to reduction.

Q. 18 (D)

Zone refining method is based on the principle that an impure molten metal on gradual cooling will deposit crystals of the pure metal, while the impurities will be left in the remaining part of the molten metal.
Q. 19 (B)
$\mathrm{Na}_{3} \mathrm{AlF}_{6} \quad$ or $\quad 3 \mathrm{NaF} . \mathrm{AlF}_{3}$
$\mathrm{NaF} \underset{\text { compound }}{\stackrel{\text { lonic }}{\rightleftharpoons}} \mathrm{Na}^{+}+\mathrm{F}^{-} ; \mathrm{AlF}_{3} \underset{\text { compound }}{\text { lonic }}$
$\mathrm{Al}^{3+}+3 \mathrm{~F}^{-}$.
Q. 20 (C)
(I) Ti (s) (impure) $+2 \mathrm{I}_{2}(\mathrm{~g}) \xrightarrow{150-250^{\circ} \mathrm{C}} \mathrm{TiI}_{4}$ (volatile)

$$
\xrightarrow[\text { tungsten filament }]{1400^{\circ} \mathrm{C}} \mathrm{Ti} \quad(\mathrm{~s})
$$

(pure) $+2 \mathrm{I}_{2}(\mathrm{~g})$
(II) $2 \mathrm{PbS}+3 \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$

(III)Cathode : Al^{3+} (melt) $+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(l)$

Anode : $\mathrm{C}(\mathrm{s})+\mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{e}^{-}$

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{O}^{2-}(\text { melt }) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{e}^{-}
$$

Q. 21 (D)

Zr (impure) $+2 \mathrm{I}_{2} \xrightarrow{<1800 \mathrm{~K}} \mathrm{ZrI}_{4} ; \mathrm{ZrI}_{4} \xrightarrow{>1800 \mathrm{~K}}$ Zr (pure) $+2 \mathrm{I}_{2}$ and hence over $1800^{\circ} \mathrm{C}$ practically no reaction can take place between Zr and I_{2}.
Therefore, (D) option is correct.
Q. 22 (C)
$\mathrm{MgCl}_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}$
At cathode : $\mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Mg}(99 \%$ pure $)$;

At anode : $\quad 2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$

Q. 23 (A)

$\mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{CaSiO}_{3}$ (slag) (Haematite ore contains silica as impurities).
Slag being lighter and insoluble in molten metal floats over and thus forms upper layer.

Q. 24 (C)

Iron contains the impurity of SiO_{2} (acidic) which is removed by basic flux i.e., CaO forming a slag.
Q. 25 (B)
$\mathrm{Ag}_{2} \mathrm{~S}$ (concentrated ore) $+2 \mathrm{NaCN}(\mathrm{aq}) \stackrel{\text { Air }}{\rightleftharpoons}$ $2 \mathrm{AgCN}(\mathrm{s})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})$.
$4 \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+5 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow 2 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ $+4 \mathrm{NaOH}(\mathrm{aq})+2 \mathrm{~S}(\mathrm{~s})$
$\mathrm{AgCN}(\mathrm{s})+\mathrm{NaCN}(\mathrm{aq}) \longrightarrow \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ (soluble complex)
$2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right](\mathrm{aq})+\mathrm{Zn}($ dust $) \longrightarrow 2 \mathrm{Ag}(\mathrm{s})+$ $\mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right](\mathrm{aq})$.
Hence these reactions suggest that extraction of silver from $\mathrm{Ag}_{2} \mathrm{~S}$ by the use of sodium cyanide is an example of hydrometallurgy.
Q. 26 (D)
(A) Cupellation is used when lead is present in traces.
(B) In argentiferous lead the silver is removed by Parke's process because silver has higher solubility in molten zinc than lead.
(C) Silver has higher solubility in molten zinc than lead and thus forms zinc-silver alloy from which zinc can be distilled off leaving behind the silver.
(D) Silver has higher solubility in molten zinc and thus forms zinc-silver alloy from which zinc can be distilled off leaving behind the silver.

Q. 27 (C)

Anode mud contains Ag, Au as impurities.

Q. 28 (A)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (CD)

Common impurites in the
bauxite are $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$
Q. 2 (ACD)
(A) $\mathrm{Cu}_{2} \mathrm{O}$ and ZnO
(B) MgCO_{3} and $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{Cu}_{2} \mathrm{~S}$ and $2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$.
(D) $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \& \mathrm{Na}_{3} \mathrm{AlSi}_{3} \mathrm{O}_{8}$.
Q. 3 (ABD)

Argentite $\rightarrow \mathrm{Ag}_{2} \mathrm{~S}$
Galena $\rightarrow \mathrm{PbS}$
Anglesite $\rightarrow \mathrm{PbSO}_{4}$
Copper glance $\rightarrow \mathrm{Cu}_{2} \mathrm{~S}$
Q. 4 (ABC)
(A) Haematite $\rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
(B) Magnetite $\rightarrow \mathrm{FeO}_{4}$
(C) Limonite $\rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(D) Copper pyrite $\rightarrow \mathrm{CuFeS}_{2}$
Q. 5 (BD)
(A) $\mathrm{KCl}, \mathrm{KNO}_{3}$
(B) $\mathrm{SnO}, \mathrm{PbO}$
(C) $\mathrm{FeCO}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(D) $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{SnO}_{2}$

Therefore, (B, D) options are correct.
Q. 6 (AC)

Egg shell is made up of CaCO_{3}.
Dolomite : $\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$; Calamine: ZnCO_{3}
Lime stone : CaCO_{3}; Feldspar : $\mathrm{K}_{2} \mathrm{O}_{2} \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$.
Q. 7 (ABC)
(A) Sulphides ores are generally concentrated by froth floatation.
(B) $2 \mathrm{CuFeS}_{2}+4 \mathrm{O}_{2} \xrightarrow{\text { roasting }} \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{FeO}+3 \mathrm{SO}_{2}$ $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$ (fusible slag) $+\mathrm{Cu}_{2} \mathrm{~S}$ (matte)
(C) Bessemerisation

$$
\begin{aligned}
& 2 \mathrm{FeS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{FeO}+2 \mathrm{SO}_{2} \\
& \mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3} \\
& 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2} \\
& 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}
\end{aligned}
$$

(self reduction).
Q. 8 (BC)

Poling is used for the purification of those metals which contain the impurities of their own oxides like

CuO in Cu and SnO in Sn .

Q. 9 (AB)

The Crude metallic Zn can be purified by elctrolysis process or by distillation.
Q. 10 (ABCD)
Q. 11 (AB)
Q. 12 (ABC)
Q. 13 (BD)

Liquation process is used for the purification of those metals which are less fusible than impurities present.

Q. 14 (BC)

Sulphides ores concentration by frother floatation process.
Q. 15 (AC)
Q. 16 (AC)

During calcination
Carbonates \rightarrow Oxides
Hydroxide \rightarrow Oxide

Q. 17 (AC)

Q. 18 (ABD)
(C) is incorrect statement as $2 \mathrm{CuFeS}_{2}+4 \mathrm{O}_{2} \xrightarrow{\Delta}$ $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{FeO}+3 \mathrm{SO}_{2}$.
Q. 19 (AB)

Carbon reduction is used for $\mathrm{Fe}, \mathrm{Sn}, \mathrm{Zn} ; \mathrm{Pb}$
$\Rightarrow \quad \mathrm{Fe}_{2} \mathrm{O}_{3} \& \mathrm{SnO}_{2}$
Q. 20 (AB)
CuFeS_{2} and PbS are concentrated by froth floatation process.
Q. 21 (AC)
Q. 22 (CD)
Q. 23 (ACD)
leaching is used for red bauxite, gold ore and silver ore.
Q. 24 (BC)
Q. 25 (AC)
(A) Roasting. It is a process of heating the concentrated ore (generally sulphide ore) strongly in
the excess of air or O_{2} below its melting point.
Roasting at high temperature. The sulphide ores of some of the metals like $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Sb}$ etc., when heated strongly in the free supply of air or O_{2} are reduced directly to the metal rather than to the metallic oxides.
(C) Calcination. It is a process of heating the concentrated ore strongly in a limited supply of air or in the absence of air.

Q. 26 (BC)

Poling is applied for Cu and Sn .
Q. 27 (ABC)

In poling process of purification of $\mathrm{Cu}, \mathrm{O}_{2}$ oxidises $\mathrm{S}, \mathrm{Sb}, \mathrm{As}$ and Fe into their oxides.

Q. 28 (ABC)

smelting of iron in a blast furnace does not involve sublimation.
Q. 29 (BC)
$\mathrm{Na}_{3}\left[\mathrm{AlF}_{6}\right]$ being ionic provides ions, thus increases the conductivity of the mixture and lowers its melting point (impurity lowers the melting point of the melt).
Q. 30 (AB)

Fe and Pt does not form amalgam.
Q. 31 (ABC)

For ultrapure semiconductor
materials $\mathrm{Ge}, \mathrm{Si}, \mathrm{Ga}$
Q. 32 (AC)

Ba , Potassium can not be obtained by the electrolysis of their aq. solution because. At cathode, $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$ $\rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$
At anode, $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-}$
Q. 33 (ABCD)

All processes are correct.
(A) $\mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{CO} \xrightarrow{\Delta} 3 \mathrm{Fe}+4 \mathrm{CO}_{2}$
(B) $\mathrm{ZnO}+\mathrm{C} \xrightarrow{\Delta} \mathrm{Zn}+\mathrm{CO}$
(C) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\Delta} 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(D) $\mathrm{PbO}+\mathrm{C} \xrightarrow{\Delta} \mathrm{Pb}+\mathrm{CO}$
Q. 34 (BCD)
(A) $\frac{\Delta G}{T}=-\Delta S, \frac{\Delta G}{T}$ is slope in Ellingham diagram.

Which is same below the boiling point.
(B) Below the boiling point slope is same as factor $T \Delta S$ is same.
(C) Above $\Delta \mathrm{G}=0$ line free energy becomes positive
so oxide decomposes.
(D) Random increases i.e. $\Delta \mathrm{S}$ increases, so slope also increases.

Q. 35 (ABD)

Cynide process used for Au and Ag comlexes formed in this, are : $\mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right], \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$, $\mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]$.

Q. 36 (AD)

Gold is not attacked by sulphuric acid, nitric acid and Cl_{2} use to separate it from borax so, parting of gold can be done with these.
Q. 37 (BCD)
Q. 38 (ACD)

The reaction which takes place in Besseiner converter during extration of Cu
$\mathrm{Cu}_{2} \mathrm{~S}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{SO}_{2} \uparrow$
$\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathrm{Cu}+\mathrm{SO}_{2} \uparrow$
$\mathrm{FeS}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{FeO}+\mathrm{SO}_{2} \uparrow$
Ans. \rightarrow A, C, D
Q. 39 (AB)
CaCl_{2} is added to improve electrical conductivity and it also decrease the m.p. of NaCl .

Q. 40 (ABCD)

(i) Slag is a fusible mass. (ii) It has low melting point. (iii) It is lighter than and immiscible with the molten metal. It is due to these impurities that the slag floats as a separate layer on the molten metal and can thus be easily separated from the metal. The layer of the slag on the molten metal prevents the metal from being oxidised. It is used as one of the constituent of cement and in building material.
Q. 41 (ABC)

Semlting \rightarrow C-reduction
Q. 42 (BC)
Q. 43 (AD)
Q. 44 (AB)
Q. 45 (BC)

Cyanide process is applied for extraction of Ag and Au.
Q. 46 (AD)
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
$\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$

Q. 47 (ABD)

Cathode \rightarrow graphite material
Anode \rightarrow graphite material
\rightarrow anode react away forming CO_{2}
Q. 48 (BD)

Molten matte $\rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeS}$
It is treated with a blast
of air and sand.

Q. 49 (CD)

Q. 50 (BD)

Sodium and Aluminium reacts with water so often extracted from their fuses salts.

Q. 51 (AC)

(A) true;
(C) small amount of Mn is added to molten steel to remove sulphur and oxygen.

Q. 52 (A)

Dissolution of gold in NaCN forming soluble complex is reversible, so it is carried out in presence of air bubbling. Oxygen contained in air oxidises Au to Au^{+}which then complexes with CN^{-}to form soluble complex.

Q. 53 (B)

(B) HCN produced with water by NaCN and KCN is poisonous and have carcinogenic activity.
Q. 54 (C)

The process which involves the dissolution of ore in to a suitable reagent and then extraction of metal from the solution by more electropositive element is called hydrometallurgy.
Q. 55 (A)
$[\mathrm{X}]=\mathrm{CuCO}_{3} \mathrm{Cu}(\mathrm{OH})_{2}$ or $2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} ;[\mathrm{Y}]=$ $\mathrm{Cu}_{2} \mathrm{~S}$ or CuFeS_{2}
$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \xrightarrow{\Delta} \mathrm{CuO}(\mathrm{S})+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$;
$[\mathrm{Y}]=\mathrm{Cu}_{2} \mathrm{~S}$ or CuFeS_{2}
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2} ; \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O}$
$\longrightarrow 6 \mathrm{Cu}(\mathrm{M})+\mathrm{SO}_{2}(\mathrm{~g})$
$5 \mathrm{SO}_{2}+2 \mathrm{IO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{I}_{2}+\mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+}$
$\mathrm{I}_{2}+$ strach \longrightarrow blue colour

Q. 56 (D)

It is sulphide ore $\left(\mathrm{Cu}_{2} \mathrm{~S}\right.$ or $\left.\mathrm{CuFeS}_{2}\right) \&$ is called as copper glance or copper pyrite ; S^{2-} gives yellow ppt. of CdS with CdCO_{3} suspension.
Q. $57 \quad \mathrm{G}_{1}=\mathrm{SO}_{2}$; It can increase its oxidation state from +4 to $+6 \&$ decrease from +4 to 0 or -2 .
Q. $58 \mathrm{CuCO}_{3}+2 \mathrm{HCI} \longrightarrow \mathrm{CuCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CuCl}_{2}+$ $2 \mathrm{KI} \longrightarrow \mathrm{CuI}_{2}+2 \mathrm{KCI} ; 2 \mathrm{CuI}_{2} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow+\mathrm{I}_{2}$
Q. $59 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}\left(\mathrm{OH}_{2}\right) \xrightarrow{\Delta} \mathrm{CuO} \downarrow$ (black) $+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}+4 \mathrm{HCl} \longrightarrow 2 \mathrm{CuCl}_{2}+3 \mathrm{H}_{2} \mathrm{O}+$ CO_{2};
$2 \mathrm{CuCl}_{2}+4 \mathrm{KI} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow$ (white) $+\mathrm{I}_{2}+4 \mathrm{KCI}$
Q. 60 (C)

Since the mixture is soluble in water to give strong alkaline solution, if must contain NaOH as one of the constituent. Since the aqueous solution gives precipitate with diluted HCl . Which dissolves in excess of diluted HCl . It must contain Zinc salt. Then the mixture consists of
$\mathrm{ZnSO}_{4}+4 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{NaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{ZnO}_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{Zn}(\mathrm{OH})_{2} \downarrow$
$\mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}($ So lub le $)+2 \mathrm{H}_{2} \mathrm{O}$
Q. 61 (B)

$$
\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow(\text { White ppt. })+2 \mathrm{KCl}
$$

Q. 62 (B)

$$
\mathrm{AgNO}_{3}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}(\text { So luble })+2 \mathrm{H}_{2} \mathrm{O}
$$

Q. $63 \quad(\mathrm{~A} \rightarrow \mathrm{p}, \mathrm{r}) ;(\mathrm{B} \rightarrow \mathrm{p}, \mathrm{r}) ;(\mathrm{C} \rightarrow \mathrm{q}) ;(\mathrm{D} \rightarrow \mathrm{s})$
(A) Extraction of gold is a hydrometallurgical process in which gold ore is leached with NaCN solution and then precipitated by zinc scrap.
(B) Extraction of copper is a hydrometallurgical process in which copper ore is leached with $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and then precipitated by iron scrap.
(C) Slag formation process is smelting.
(D) Drying of hydrated MgCl_{2} in presence of dry HCl gas is a calcination process.
Q. $64(\mathrm{~A}) \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{R}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{P}$

Calamine $\rightarrow \mathrm{ZnCO}_{3}$
Cryolite $\rightarrow \mathrm{Na}_{3} \mathrm{AlF}_{6}$
Malachite $\rightarrow \mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Carnaite $\rightarrow \mathrm{KCl}^{2} \mathrm{MgCl}_{2} 6 \mathrm{H}_{2} \mathrm{O}$
Q. $65(\mathrm{~A} \rightarrow \mathrm{r}, \mathrm{t}) ;(\mathrm{B} \rightarrow \mathrm{s}) ;(\mathrm{C} \rightarrow \mathrm{t}) ;(\mathrm{D} \rightarrow \mathrm{p}) ;(\mathrm{E} \rightarrow \mathrm{q})$. (A) $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$ (slag) ; this reaction occurs in extraction of copper from copper pyrites in smelting as well as in bessemerisation processes.
(B) Reduction of oxides of Mn, Cr with electropositive metal aluminium is called thermite process.
(C) Self reduction generally occurs in bessemer converter in extraction of copper from copper pyrites.
(D) Conversion of $\mathrm{Al}(\mathrm{OH})_{3}$ into $\mathrm{Al}_{2} \mathrm{O}_{3}$ by heating in absence of air represents the calcination.
(E) Displacement of silver from its salt solution by more electropositive zinc.

Q. 66 (B)

Cyanide process $\rightarrow \mathrm{Ag}$ and Au
floatation process \rightarrow Dressing of Hgs
Electrolytic reduction \rightarrow Extraction of Al
Zone refining \rightarrow Ultrapure of Ge ,
Ans. \rightarrow (B)
Q. $67 \quad(\mathrm{~A} \rightarrow \mathrm{q}, \mathrm{s}) ;(\mathrm{B} \rightarrow \mathrm{r}) ;(\mathrm{C} \rightarrow \mathrm{s}) ;(\mathrm{D} \rightarrow \mathrm{p})$
(A) Poling : Impure molten metal is stirred with green wood poles. The reducing gases liberated reduce the oxide of the metal to free metal. This method is used for the purification of those metals which contain the impurities of their own oxides. For example CuO in Cu and SnO_{2} in tin.
(B) Cupellation : It is used when impurities are of other metals and is mainly used for the removal of lead from silver.
(C) Liquation : This process is used for the purification of the metal, which it self is readily fusible but the impurity present in it are not i.e. impurities are non-fusible. This process is used for purification of Sn and Zn .
(D) Van Arkel method : (vapour phase refining) Metals like titanium, zirconium, thorium and uranium are purified by this method.
Q. 68 (D)
(I) Iron and $\mathrm{Cu} \rightarrow$ Bessemerisation
(II) Zirconium \& $\xrightarrow{\text { titanium }}$ Van Arkel
(III) Lead and $\mathrm{Sn} \longrightarrow$ Liquation
(IV) $\mathrm{Cu} \& \mathrm{Sn} \longrightarrow$ Poling
Q. 69 (B)
(A) Tin-cassiterite $\left(\mathrm{SnO}_{2}\right)$
(B) Zinc - calamine $\left(\mathrm{ZnCO}_{3}\right)$
(C) Iron - siderite $\left(\mathrm{FeCO}_{3}\right)$
(D) Lead - Cerrusite $\left(\mathrm{PbCO}_{3}\right)$

Therefore, (B) option is correct.
Q. 70 (A)
(a) $\mathrm{C}+\mathrm{CO}_{2} \longrightarrow 2 \mathrm{CO} \longrightarrow 1000^{\circ} \mathrm{C}$
(b) $\mathrm{FeO}+\mathrm{CO} \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2} \longrightarrow 800^{\circ} \mathrm{C}$
(c) $\mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{CaSiO}_{3} \longrightarrow 1800^{\circ} \mathrm{C}$
(d) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \longrightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \longrightarrow 400^{\circ} \mathrm{C}$
Q. 71 (B)
Q. 72 (A)

Down cell \rightarrow Fused ($40 \% \mathrm{NaCl}+60 \% \mathrm{CaCl}_{2}$)
Dow seawater process \rightarrow fused NaCl_{2} Hall-heroult \Rightarrow fused $\left(\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Na}_{3} \mathrm{AlF}_{6}+\mathrm{CaF}_{2}\right)$ Moissan \rightarrow Fused KHF_{2}
Q. 73 (C)
(a) Van Arkel method \rightarrow Purification of Ta
(b) Solvay process \rightarrow Manufacture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) Cupellation \rightarrow Refining of silver
(d) polling \rightarrow Purification of Cu .

NUMERICAL VALUE BASED

Q. $1 \quad$ (7)

Q. 2 (2)
Q. 3 (4)
Q. 4 (4)

$$
\begin{aligned}
& \mathrm{Bi}_{2} \mathrm{~S}_{3} \text { - Yellow Orange } \\
& \mathrm{CdS} \text { - Yellow }
\end{aligned}
$$

Q. 5 (4)

$\mathrm{NO}_{3}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}(\text { conc })}$

Q. 6

(7)
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \xrightarrow[-720]{300^{\circ} \mathrm{C}} 2 \mathrm{FeSO}_{4} \xrightarrow[\text { temp }]{\text { High }}$.
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}+\mathrm{SO}_{3}$
Q. 7 (5)

$$
\mathrm{Ag}_{2} \mathrm{SO}_{3},{\mathrm{AgCl}, \mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}, \mathrm{AgNO}_{2} \& \mathrm{CH}_{3} \mathrm{COOAg}}^{2}
$$

are white ppts, while $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ is yellow and $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is red.

Q. 8 (3)

$\mathrm{AgCl}, \mathrm{Zn}(\mathrm{OH})_{2}, \mathrm{Cu}(\mathrm{OH})_{2}$ will dissolve in excess of $\mathrm{NH}_{4} \mathrm{OH}$.
Q. 9 (4)
$\mathrm{Na}\left(\mathrm{NH}_{4}\right) \mathrm{HPO}_{4} .4 \mathrm{H}_{2} \mathrm{O}$
Q. 10 Benitoite is represented as $\mathrm{BaTi}\left[\mathrm{Si}_{3} \mathrm{O}_{\mathrm{n}}\right]$, the value of n is \qquad
Ans. (9)
Q. 11 (3) (ii, iii, iv)

Name of ore
 Name of ore
 Composition of ore Composition of ore

(i) Carnallite $\longrightarrow \mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
(ii) Cuprite $\longrightarrow \mathrm{Cu}_{2} \mathrm{O}$
(iii) Cassiterite $\longrightarrow \mathrm{SnO}_{2}$
(iv) Chromite $\longrightarrow \mathrm{FeO} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}$
(v) Cinnabar $\longrightarrow \mathrm{HgS}$
(vi) Calamine $\longrightarrow \mathrm{ZnCO}_{3}$
(vii) Cerussite $\longrightarrow \mathrm{PbCO}_{3}$
(viii) Chalcopyrite $\longrightarrow \mathrm{CuFeS}_{2}$
(ix) Chalcocite $\longrightarrow \mathrm{Cu}_{2} \mathrm{~S}$

So, answer is (ii), (iii) \& (iv)

Q. 12 (75)

Fe^{2+} and Fe^{3+}
Number of $\mathrm{Fe}^{3+}=2 \times$ Number of Fe^{2+}
$\therefore \quad \mathrm{EF}=2 \mathrm{Fe}^{3+} . \mathrm{Fe}^{2+} \mathrm{O}_{4}{ }^{2-}=\mathrm{Fe}_{0.75} \mathrm{O}$
Q. 13 (4) (i, ii, iii \& vii)

(i) Dolomite	$\mathrm{CaCO}_{3} \cdot \mathrm{MgCO}_{3}$
(ii) Malachite	$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
(iii) Calcite	ZnCO_{3}
(iv) Copperpyrities	CuFeS_{2}
(v) Sylvine	KCl^{2}
(vi) Cryolite	$\mathrm{Na}_{3} \mathrm{AlF}_{6}$
(vii) Siderite	FeCO_{3}
(viii) Iron pyrite	FeS_{2}
(ix) Argentite	$\mathrm{Ag}_{2} \mathrm{~S}$

So, answer is (i), (ii), (iii) and (vii)
Q. 14 (4)

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& \quad ; \quad \mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+ \\
& \mathrm{S}^{2-} \\
& \mathrm{Au}+2 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+4 \mathrm{OH}^{-} \\
& ; \quad \mathrm{CuFeS}_{2} \longrightarrow \text { No leaching }
\end{aligned}
$$

$\mathrm{PbS} \longrightarrow$ No leaching $; \mathrm{MgCl}_{2} \longrightarrow$ No leaching; $\quad \mathrm{FeCO}_{3} \longrightarrow$ No leaching

$$
2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow
$$

$4 \mathrm{CuSO}_{4}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell) ; \mathrm{HgS} \longrightarrow$ No leaching
Q. 15 (3)
$2 \mathrm{HgS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{HgO}+2 \mathrm{SO}_{2} ; 2 \mathrm{HgO}+\mathrm{HgS}$
$\longrightarrow 3 \mathrm{Hg}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 3 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2} ; 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S}$
$\longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
$2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2} ; 2 \mathrm{PbO}+\mathrm{PbS} \longrightarrow$ $3 \mathrm{~Pb}+\mathrm{SO}_{2}$
Q. 16 (6)

The metals which are more electropositive than $\mathrm{Al}(\mathrm{Li}$ $\rightarrow \mathrm{Al})$. They are extracted by electrolysis of their molten metalchlorides.
$\mathrm{Li}, \mathrm{Ba}, \mathrm{Na}, \mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}$
Q. 17 (2)

At $500-800 \mathrm{~K}$ (lower temperature range in the blast furnace)

$$
3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+
$$

CO_{2}

$$
\begin{aligned}
& \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \longrightarrow 3 \mathrm{Fe}+4 \mathrm{CO}_{2} \\
& \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow 2 \mathrm{FeO}+\mathrm{CO}_{2}
\end{aligned}
$$

At $900-1500 \mathrm{~K}$ (higher temperature range in the blast furnace):
$\mathrm{C}+\mathrm{CO}_{2} \longrightarrow 2 \mathrm{CO}$;
$\mathrm{FeO}+\mathrm{CO} \longrightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
Q. 18 (5) (a, b, d, e, f)

In NaCl metallurgy CaCl_{2} and KF are added. Carnellite firstly converted into anhydrous MgCl_{2} then undergo process.
Q. 19 (7)
(1) $\mathrm{B}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \xrightarrow{\Delta} 2 \mathrm{~B}+\mathrm{Al}_{2} \mathrm{O}_{3}$ (aluminothermic process-extraction of boron)
(2) $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Al} \xrightarrow{\Delta} 2 \mathrm{Cr}+\mathrm{Al}_{2} \mathrm{O}_{3}$ (extraction of chromium)
(2) $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \xrightarrow{\Delta} \mathrm{Ti}+2 \mathrm{MgCl}_{2}$ (Kroll processextraction of titanium)
(4) $\mathrm{PbS}+2 \mathrm{PbO} \xrightarrow{\Delta} 3 \mathrm{~Pb}+\mathrm{SO}_{2}$ (extraction of lead)
(5) $3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \longrightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2}$ (Indirect reduction)
(6) $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \longrightarrow 3 \mathrm{FeO}+\mathrm{CO}_{2}$ (Indirect reduction)
(7) $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$ (Self reduction)

Q. 20 (16)

Net reaction in Hall-Heroult process is :
or

$$
3 \mathrm{C}+2 \mathrm{AI}_{2} \mathrm{O}_{3} \longrightarrow 4 \mathrm{AI}+3 \mathrm{CO}_{2}
$$

$$
\text { number of electrons }(\mathrm{n})=12
$$

$$
\begin{aligned}
\Delta \mathrm{G}^{\mathrm{o}} & =3 \Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{CO}_{2}\right)-2 \Delta \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}\left(\mathrm{AI}_{2} \mathrm{O}_{3}\right) \\
& =3 \times 394-2(-1520)=1858
\end{aligned}
$$

kJ

$$
4 \mathrm{AI}^{3+} 12 \mathrm{e}^{-} \longrightarrow 4 \mathrm{AI}
$$

$$
\begin{aligned}
& \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}_{\text {cell }}^{\mathrm{o}} \\
& -\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\frac{\Delta \mathrm{G}^{\mathrm{o}}}{\mathrm{nF}}=\frac{1858 \times 1000}{12 \times 96500}=
\end{aligned}
$$

1.60 V

Ans. $1.60 \times 10=16$
Q. 21 (65)
$2 \mathrm{Na}\left[\operatorname{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag}$
$\frac{0.5 \times 500}{1000}=0.25$ moles
moles of $\mathrm{Zn}=\frac{0.25}{2}$
moles of $\mathrm{Zn}=\frac{0.25}{2} \times 65=\frac{65}{8} \times 8=65$
Q. 22 (39)

$$
\begin{aligned}
\Delta \mathrm{G}^{\mathrm{o}} & =+\mathrm{nFE}_{\text {cell }}^{\mathrm{o}} \quad \mathrm{MgCl}_{2} \longrightarrow \mathrm{Mg}+\mathrm{Cl}_{2} \\
& =\frac{2 \times 96500 \times 2.02}{1000}=390 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

Q. 23 (60)
$\mathrm{ZrI}_{4}(\ell=4)$
Gas involved in Mond's process is $\mathrm{CO}(\mathrm{m}=3)$.
Thomas slag is $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{n}=3+2=5)$
Q. 24

Physical Method : I, II, III, IV
Chemical Method : V, VI, VII, VIII, IX

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

$$
\begin{aligned}
& 2 \mathrm{ZnS}+3 \mathrm{O}_{2} \xrightarrow{950^{\circ} \mathrm{C}} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2} \\
& \mathrm{ZnS}+2 \mathrm{O}_{2} \xrightarrow{950^{\circ} \mathrm{C}} \mathrm{ZnSO}_{4}
\end{aligned}
$$

$$
\text { then } 2 \mathrm{ZnSO}_{4} \xrightarrow{950^{\circ} \mathrm{C}} 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}+\mathrm{O}_{2}
$$

Q. 2 (A)
Complexation step

$$
\begin{gathered}
\mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{S}^{-2} \\
\downarrow+\mathrm{Zn} \text { Reduction step } \\
{\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{-2}+\mathrm{Ag}}
\end{gathered}
$$

Q. 3 (A)

$$
\mathrm{ZnS}_{(\mathrm{s})}+\mathrm{O}_{2} \xrightarrow{\text { heat }} \mathrm{ZnO}+\mathrm{SO}_{2}
$$

Roasting

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)

Theory based
Q. 2 (1)
Q. 3
Q. 4
Q. 5 (3)
(a) Mercury \rightarrow Distillation refining
(b) Copper \rightarrow Electrolytic refining
(c) Silicon \rightarrow Zone refining
(d) Nickel \rightarrow Vapour phase refining
Q. 6 (1)

To reduce the melting point of reaction mixture, cryolite is added.
Q. 7 (4)

Ore Formula

(a) Haematite $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(b) Bauxite $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$
(c) Magnetite $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(d) Malachite $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
Q. 8 (1)

At intersection point $\Delta \mathrm{G}=0$ and sudden increase in slope is due to melting or boiling point of the metal.

Q. 9 (1)

Reduction of $\mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}$ is carried out by electrolytic reduction of its fused salts.
$\mathrm{ZnO}, \mathrm{Fe}_{2} \mathrm{O}_{3} \& \mathrm{Cu}_{2} \mathrm{O}$ can be reduce by carbon.
Q. 10 (2)

In roasting process, metal sulphide (MS) ore are converted into metal oxide and sulphur is remove in the form of SO_{2} gas.
$\mathrm{H}_{2} \mathrm{O}$

H
$\theta=104.5^{\circ}$
the hybridisation of oxygen is water molecule is sp^{3}.
So electron geometry of water molecule is tetrahedral and the bond angle should be $109^{\circ} 28^{\prime \prime}$ but as we know that lone pair-lone pair repulsion of electrons is higher than the bond pairbond pair repulsion because lone pair is occupied more space areound central atom than that of bond pair.
$2 \mathrm{MS}+3 \mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{MO}+2 \mathrm{SO}_{2} \uparrow$
Q. 11 (2)
Q. 12 (1)
Q. 13 (4)
Q. 14 (1)
Q. 15 (1)
Q. 16 (2)
Q. 17 (2)
Q. 18 (1)
Q. 19 (4)
Q. 20 [6]

Anode mud contains $\mathrm{Sb}, \mathrm{Se}, \mathrm{Te}, \mathrm{Ag}$, Au and Ot

Q. 21 (2)

Q. 22 (2)

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (AD)

Important ore of tin is cassiterite $\left(\mathrm{SnO}_{2}\right) . \mathrm{SnO}_{2}$ is reduced to metal using carbon at $1200-1300^{\circ} \mathrm{C}$ in an electric furnace. The product often contains traces of Fe , which is removed by blowing air through the molten mixture to oxidise FeO which then floats to the surface.

$$
\begin{aligned}
& \mathrm{SnO}_{2}+2 \mathrm{C} \longrightarrow \mathrm{Sn}+2 \mathrm{CO} \\
& \mathrm{Fe}+\mathrm{O}_{2} \longrightarrow \mathrm{FeO}
\end{aligned}
$$

Q. 2 (D)

In haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, Fe is present in (III) oxidation state and in magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ which is a mixed oxide of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Fe}$ is present in (II) and (III) oxidation state.
Q. 3 (B)

In extraction of silver, $\mathrm{Ag}_{2} \mathrm{~S}$ is leached with KCN in presence of air :
$\mathrm{Ag}_{2} \mathrm{~S}+\mathrm{NaCN}+\mathrm{O}_{2} \rightleftharpoons \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
Thus, O_{2} is oxidant.

$$
2 \mathrm{Ag}(\mathrm{CN})_{2}^{-}+\mathrm{Zn} \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}+2 \mathrm{Ag} \downarrow
$$

Q. 4 (A)

Common ore of $\mathrm{Ag}-\mathrm{Ag}_{2} \mathrm{~S}, \mathrm{Cu}-\mathrm{CuFeS}_{2}$,
$\mathrm{Pb}-\mathrm{PbS}, \mathrm{Sn}-\mathrm{SnO}_{2}, \mathrm{Mg}-\mathrm{KCl} . \mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Al}-$ $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$

So answer is (A)
Q. 5 (CD)
SnO_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are reduced by C reduction method. $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{MgCO}_{3} . \mathrm{CaCO}_{3}$ are reduced by electrolytic reduction.
Q. 6 (BCD)
$\mathrm{Cu}_{2}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{CuO} \longrightarrow 4 \mathrm{Cu}+\mathrm{SO}_{2}$
$\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{CuSO}_{4} \longrightarrow 3 \mathrm{Cu}+2 \mathrm{SO}_{2}$
Q. 7 (BCD)

Impure Cu is used as anode pure Cu deposited at cathode. Electrolyte is acidified solution of CuSO_{4}. impurities settle as anode mud.
Q. 8 (A - P,Q,S) ; (B-T) ; (C - Q,R) ; (D - R)
Q. 9 (ABC)
Q. 10 (B)

Ore	Formula
Calamine	ZnCO_{3}
Malachite	$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
Magnetite	$\mathrm{Fe}_{3} \mathrm{O}_{4}$
Cryolite	$\mathrm{Na}_{3} \mathrm{AlF}_{6}$

So correct answer is option (B)
Q. 11 (A,C,D)
$4 \mathrm{Au}(\mathrm{s})+8 \mathrm{CN}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})$
(Q)
$2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})+2 \mathrm{Au}(\mathrm{s})$
(R)
(T)
(Z)
Q. 12 (B,C,D)
(A)
$\mathrm{Au}+\mathrm{HNO}_{3}+4 \mathrm{HCl} \rightarrow \mathrm{AuCl}_{4}^{\odot}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(B) Aqua regia $=3 \mathrm{HCI}$ (cons.) $+\mathrm{HNO}_{3}$ (cons.)
(C) $\mathrm{AuCl}_{4}^{\odot}$ is produced
(D) Yellow colour of aqua regia is due to it's decomposition into NOCl (orange yellow) and Cl_{2} (greenish yellow).
Q. 13 (A,B,C,D)
(A) $2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{\text {(aq.) }}$
$+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{Al}(\mathrm{OH})_{3}(\downarrow)$
or
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{ppt})$
(B) Function of $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ is to lower the melting point of electrolyte.
(C) During electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$, the reactions at anode are :
$\left[2 \mathrm{Al}^{3+}(\ell)+3 \mathrm{O}^{2-}(\ell) \xrightarrow{\text { Atanode }} \mathrm{O}_{2}(\right.$ gas $\left.)+2 \mathrm{e}^{-}\right]$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}(\uparrow)+\mathrm{CO}_{2}(\uparrow)$
(D) The steel vessel with a lining of carbon acts as cathode.
Q. 14 (A , C, D)
(A) $\mathrm{PbS}+2 \mathrm{PbO} \rightarrow 3 \mathrm{~Pb}+\mathrm{SO}_{2}$ (self reduction)
(B) Silica is added to remove impurity of Fe in the form of slag FeSiO_{3}
(C) CuFeS_{2} ore is partially oxidized first by roasting and then self reduction of Cu takes place to produce blister copper.
(D)
$4 \mathrm{Na}\left[\stackrel{+1}{\mathrm{Au}}(\mathrm{CN})_{2}\right]+2 \mathrm{Zn} \rightarrow 2 \mathrm{Na}_{2}\left[\stackrel{+2}{\mathrm{Zn}}(\mathrm{CN})_{4}\right]+4 \stackrel{0}{\mathrm{Au}}$

Qualitative Analysis

EXERCISES

JEE-MAIN
 OBJECTIVE QUESTIONS

Q. 1

(i) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{2}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}$ (green) + $3 \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{CO}_{2}$ and O_{2} do not give reactions with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(ii) $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \longrightarrow \mathrm{CaCO}_{3} \downarrow$ (white) $+\mathrm{H}_{2} \mathrm{O}$; O_{2} does not give reaction with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. (iii) O_{2} dissolves in pyrogallol.

Q. 2 (4)

$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH} \uparrow$ (smells like vinegar).
Q. 3 (3)
$\mathrm{SO}_{3}{ }^{2-}+\mathrm{Ba}(\mathrm{OH})_{2} \longrightarrow \mathrm{BaSO}_{3} \downarrow$ (white) $+2 \mathrm{OH}^{-}$.
$3 \mathrm{SO}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}$ (green colour solution) $+3 \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$.
Q. 4 (3)
Q. 5 (3)
$\mathrm{H}_{2} \mathrm{~S}+$ Any strong oxidising agent
$\rightarrow \mathrm{S} \downarrow+\mathrm{H}_{2} \mathrm{O}$
(yellow - white turbidity)
Q. 6 (1)
$\mathrm{PbSO}_{4}+2 \mathrm{CH}_{3} \mathrm{COONH}_{4} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+$ $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}$.

Q. 7 (3)

$\mathrm{Pb}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{PbS} \downarrow$ (black) $+2 \mathrm{H}^{+} ; 3 \mathrm{PbS}+$ $8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO} \uparrow+3 \mathrm{~S} \downarrow+4 \mathrm{H}_{2} \mathrm{O}$. $\mathrm{Pb}^{2+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{PbSO}_{4} \downarrow$ (white).

Q. 8 (3)

$\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-} ; \mathrm{HCl} \rightleftharpoons \mathrm{H}_{2}^{+}+\mathrm{Cl}^{-}$.
Due to common ion effect, the ionisation of $\mathrm{H}_{2} \mathrm{~S}$ is suppressed and thus low concentration of S^{2-} ions is obtained. This much of S^{2-} ions concentration is enough to precipitate only $\mathrm{II}^{\text {nd }}$ group cations (because of the low K_{SP} of $\mathrm{II}^{\text {nd }}$ group sulphides).

Q. 9 (4)

Yellow precipitate of CdS is insoluble in yellow ammonium sulphide where as yellow precipitate of $\mathrm{As}_{2} \mathrm{~S}_{3}$ is soluble forming $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsS}_{4}$.
Q. 10 (4)
$\mathrm{AS}_{2} \mathrm{~S}_{3}$ is insoluble in dil. acids but soluble in alkalie.
Q. 11 (4)
$\mathrm{Zn}^{2+}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}$

Q. 12 (1)
$\mathrm{PbS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$ and CuS dissolve in dilute HNO_{3} forming nitrates but HgS dissolves in aquaregia forming HgCl_{2}.
Q. 13 (1)
(1) $\mathrm{Cu}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{CuS} \downarrow$ (black) ,
(2) $\mathrm{Cd}^{2}+\mathrm{S}^{2-} \longrightarrow \mathrm{CdS} \downarrow$ (yellow),
(3) $\mathrm{Zn}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{ZnS} \downarrow$ (white),
(4) $2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}+\mathrm{S} \downarrow$ (milky white)
Q. 14 (1)
Q. 15 (2)
$\mathrm{CH}_{3} \mathrm{COONa}$ is mild basic and P^{H} is about 9
Q. 16 (2)
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{SO}_{2} \uparrow+\mathrm{S} \downarrow$ yellow ppt $\mathrm{BaS}_{2} \mathrm{O}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ yellow ppt
Q. 17 (1)

HgS is soluble in aquaregia
Q. 18 (2)

Q. 19 (2)
Q. 20 (2)
Q. 21 (2)
Q. 22 (4)
Q. 23 (1)

$$
\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{SO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{SO}_{2}+2 \mathrm{IO}_{3}^{-}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}^{-2}+8 \mathrm{H}^{+}
$$

Thus the gas B and compound A are SO_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ respectively.
Q. 24 (3)
Q. 25 (1)
Q. 26 (2)
$3 \mathrm{AgCl}+\mathrm{Na}_{3} \mathrm{AsO}_{3} \longrightarrow \mathrm{Ag}_{3} \mathrm{AsO}_{3} \downarrow$ (yellow) $+3 \mathrm{Cl}^{-}$ $+3 \mathrm{Na}^{+}$.
$\mathrm{AsO}_{4}{ }^{3-}+3 \mathrm{Ag}^{+} \longrightarrow \mathrm{Ag}_{3} \mathrm{AsO}_{4} \downarrow$ (brownish-red).
Q. 27 (4)
$\mathrm{AgCl}+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \mathrm{Cl}^{-}$(soluble complex).
Q. 28 (4)
$\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{HBr}+\mathrm{HSO}_{4}^{-} ; \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4}$
$\longrightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Br}_{2}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2} ; \quad \mathrm{I}_{2}+$ starch (स्टार्च)
\longrightarrow blue colour (नीला रंग)
Q. 29 (4)
$\mathrm{Ag}^{+}+\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr} \downarrow$ (pale yellow) ; $\mathrm{NaBr}+$ $\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow$ No reaction.
$2 \mathrm{NaBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Br}_{2} \uparrow$ (reddish brown) $+\mathrm{SO}_{2}$ $+2 \mathrm{Na}^{+}+2 \mathrm{H}_{2} \mathrm{O}$.
Q. 30 (2)
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right] \mathrm{SO}_{4}$
(brownring complex) \Rightarrow nitroso ferrous sulphate
Q. 31 (1)
PbCl_{2} is soluble in hot water
Q. 42 (2)
$2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{Ag}+2 \mathrm{NO}_{2}+\mathrm{O}_{2} \uparrow$
Q. 43 (4)
$\mathrm{AgCl}+\mathrm{Ag} . \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ souble

Q. 44 (2)

Q. 45 (4)
$\mathrm{SO}_{4}{ }^{2-}$ show no effect with Dil or Conc. acid. It give its test with PPt reaction only.

Q. 46 (2)

(1) $\mathrm{Bi}^{3+}+3 \mathrm{I}^{-} \longrightarrow \mathrm{BiI}_{3} \downarrow$ (black)
(2) $2 \mathrm{Cu}^{2+}+5 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow+\mathrm{I}_{3}^{-}$(brown solution)
(3) $\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{PbI}_{2} \downarrow$ (yellow)
(4) $\mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{HgI}_{2}$ (red/scarlet)

Q. 47 (4)

solid mix + Con. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BO}_{3}$
Taken as past green edge from on touching

Q. 48 (4)

AgF is most soluble in water due to its highest ionic character.
Q. 49 (1)
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgCl}(\mathrm{s}) \downarrow$ (white PPt)
$\mathrm{AgCl}+\mathrm{NH}_{4} \mathrm{OH} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}+$ dil $\mathrm{HNO}_{3} \longrightarrow \mathrm{AgCl}(\mathrm{s})$
(white ppt)
Q. 50 (1)
$\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}^{+} \mathrm{BO}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O}$ $+\mathrm{H}^{+}$

\Rightarrow facilitates the rex in forward direction.
Q. 51 (2)
Q. 52 (3)

All produce insoluble carbonates with $\mathrm{K}_{2} \mathrm{CO}_{3}$ except $\mathrm{Na}_{2} \mathrm{SO}_{4}$ that forms soluble $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
Q. 53 (3)
$\mathrm{BaCl}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow 2 \mathrm{AgCl} \downarrow$ (white) $+\mathrm{BaNO}_{3}$
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4} \downarrow$ (white) +2 HCl
Q. 54 (3)

$$
\begin{align*}
& 2 \mathrm{NO}_{2}^{-}+3 \mathrm{I}^{-}+4 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow \mathrm{I}_{3}^{-}+2 \mathrm{NO} \uparrow+ \\
& 4 \mathrm{CH}_{3} \mathrm{COO}^{-}+2 \mathrm{H}_{2} \mathrm{O} . \\
& \mathrm{I}_{3}^{-}+\text {starch } \longrightarrow \text { blue colouration. } \\
& \text { (1) } \tag{1}\\
& 4 \mathrm{Cl}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2} \uparrow \text { (deep red) } \\
& +3 \mathrm{H}_{2} \mathrm{O} .
\end{align*}
$$

Q. 56 (4)
Ni^{2+} requires large conc. of S^{2-} for ppt as $\mathrm{K}_{\text {sp }}$ of Ni is large. So it can not be precipitated by $\mathrm{H}_{2} \mathrm{~S}$ and HCl because here
[S^{2-}] is quiteless due to common ion effect.
Q. 57 (4)
$\mathrm{Ba}^{2+}+\mathrm{CrO}_{4}^{2-} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow) $; \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$\longrightarrow \mathrm{AgCl} \downarrow$ (white)
Q. 58 (3)
$\mathrm{Ag}_{3} \mathrm{PO}_{4}+\mathrm{NH}_{4} \mathrm{OH} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ yellow ppt
Q. 59 (3)
$\mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \rightarrow$ yellow ppt of BaCrO_{4} $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow$ white ppt of $\mathrm{BaSO}_{4} \downarrow$
Q. 60 (4)
$\mathrm{Pb}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{PbCrO}_{4} \downarrow$ (yellow) ; $\mathrm{PbCrO}_{4} \downarrow$ $+4 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}+\mathrm{CrO}_{4}{ }^{2-}$.
Q. 61 (3)
BaCrO_{4} has least Ksp
$\Rightarrow \mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow ppt)
Q. 62 (3) solid mix + solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\xrightarrow{\text { warming }} \mathrm{CrO}_{2} \mathrm{Cl}_{2} \uparrow$
Reddish brown fumes
Q. 63 (2)

Q. 64 (4)
$\mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow) $; \mathrm{Ag}^{+}+\mathrm{Br}^{-}$ $\longrightarrow \mathrm{AgBr} \downarrow$ (pale yellow).
Q. 65 (1)
Q. 66 (1)
Q. 67 (2)
Q. 68 (4)
$\mathrm{K}_{2} \mathrm{HgI}_{4} / \mathrm{KOH}$
Nesseler reagent used for detection of NH_{4}^{+}
Q. 69 (3)
(1) $\mathrm{Hg}^{2+}+\mathrm{Co}^{2+}+4 \mathrm{SCN}^{-} \longrightarrow \mathrm{Co}\left[\mathrm{Hg}(\mathrm{SCN})_{4} \downarrow\right.$ (deep blue) ;
(2) $2 \mathrm{Hg}^{2+}+\mathrm{Sn}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow$ (white) $+\mathrm{Sn}^{4+}$
$; \mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Hg} \downarrow$ (black) $+\mathrm{Sn}^{4+}+2 \mathrm{Cl}^{-}$
(3) $2 \mathrm{Hg}^{2+}+\mathrm{NO}_{3}^{-}+4 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ $\mathrm{HgO} . \mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{NO}_{3} \downarrow$ (white)
(4) KCN no effect i.e. no reaction.
Q. 70 (4)
$\mathrm{NH}_{4} \mathrm{Cl} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \quad ; \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+$ OH^{-}.
Because of common ion effect, the ionisation of $\mathrm{NH}_{4} \mathrm{OH}$ is suppressed.
Q. 71 (3)
$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{NH}_{4}{ }^{+} \xrightarrow{\Delta} \mathrm{Al}(\mathrm{OH})_{3} \downarrow+\mathrm{NH}_{3} \uparrow+$ $\mathrm{H}_{2} \mathrm{O}$
Hydroxide ion concentration is reduced owing to the formation of ammonia (a weak base) which escapes on boiling.
Q. 72 (3)
Q. 73 (1)

Ca salts impart brick red colour to the flame.
Q. 74 (4)
(1) titan yellow is absorbed by magnesium hydroxide producing a deep-red colour or precipitate.
(2) $\mathrm{Mg}^{2+}+\mathrm{NH}_{3}+\mathrm{HPO}_{4}{ }^{2-} \longrightarrow \mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \downarrow$ (white).
(3) Blue lake is formed by the adsorption of reagent on $\mathrm{Mg}(\mathrm{OH})_{2}$.
Q. 75 (2)

As the concentration of CO_{3}^{2-} ions provided by $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonia is not just sufficient to precipitate the Mg as MgCO_{3} because of its high K_{SP} value.
Q. 76 (1)
Mg^{2+} doo not show flame test because of its High I.E.
Q. 77 (3)
Q. 78 (4)
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+\mathrm{NH}_{3} \longrightarrow 2 \mathrm{Hg} \downarrow+\mathrm{HgO} . \mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{x}$
(Black)
$\mathrm{x}=\mathrm{Cl}, \mathrm{Br} \longrightarrow$ white
$\mathrm{x}=\mathrm{I} \longrightarrow$ Brown
Q. 79 (2)
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+10 \mathrm{H}_{2} \mathrm{O} ;$
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \xrightarrow{\Delta} 2 \mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$
$\mathrm{CuO}+\mathrm{B}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}$ (copper (II) metaborate) - red and opaque bead in oxidising flame.
Q. 80 (4)

Q. 81 (3)

Q. 82 (2)

Strontium chloride gives crimson colour flame in Bunsen burner.
BaCl_{2}-apple green, CaCl_{2} - brick red, KCl lilac(violet).
Q. 93 (4)
Q. 83 (2)
$\mathrm{Fe}^{2+}+\mathrm{NO}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$ (brown complex)
Q. 84 (2)
Q. 85 (2)
Q. 86 (3)
$\mathrm{Fe}(\mathrm{OH})_{3}$ is not soluble in NaOH solution but $\mathrm{Al}(\mathrm{OH})_{3}$ is soluble in NaoH solution
Q. 87 (2)

$$
\mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2} \xrightarrow[N a O H]{\text { Excess of }} \underset{\text { white ppt. }}{\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}}
$$

$\Rightarrow \mathrm{Zn}$ exist in anionic part
Q. 88 (4)
$\mathrm{NiCl}_{2} \rightarrow$ green colour
Q. 89 (3)
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ produces large $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ which may ppt other cations along with $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$ and Ca^{2+} which interfere the detection of group V cation.
Q. 90 (2)
$\mathrm{Cu}^{2+}+\mathrm{KCN} \rightarrow \mathrm{Cu}(\mathrm{CN})_{2} \rightarrow \mathrm{CuCN}+(\mathrm{COO})_{2}$
Q. 94 (2)
Q. 95 (3)
Q. 96 (2)
Q. 97 (2)
$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \xrightarrow{\Delta} \mathrm{NH}_{3} \uparrow+\mathrm{H}_{2} \mathrm{O}$.
(1) NH_{3}, alkaline in nature turns red litmus blue;
$\mathrm{NH}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (white fumes)
(2) $2 \mathrm{Hg} \mathrm{NO} 33+2 \mathrm{NH}_{3} \longrightarrow \underbrace{\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{NO}_{3}+\mathrm{Hg}}_{\text {black }}+$
$\mathrm{NH}_{4} \mathrm{NO}_{3} ; \mathrm{CuSO}_{4}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ (intense blue)
(3) $2 \mathrm{~K}_{2}\left(\mathrm{HgI}_{4}\right)+\mathrm{NH}_{3}+3 \mathrm{KOH} \longrightarrow \mathrm{HgOHgNH}_{2} \mathrm{I}$ \downarrow (brown) $+7 \mathrm{KI}+2 \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right] \mathrm{SO}_{4}$ brown ring complex
$\mathrm{Pb}^{2+}+\mathrm{I}_{2} \longrightarrow \mathrm{~Pb} \mathrm{I}_{2} \downarrow$ (yellow)
$\mathrm{Pb} \mathrm{I}_{2}+2 \mathrm{I}^{-} \rightleftharpoons\left[\mathrm{Pb} \mathrm{I}_{4}\right]^{2-}$ (soluble complex)

$$
\mathrm{Fe}^{3+}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}
$$

prussian blue
Q. 98 (2) same as above solution
Q. 99 (2)
$(1) \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
Blue colour
(2) $\left.\mathrm{Cu}^{2+}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right)\right] \longrightarrow \mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Chocolate Brown PPt
(3) $\mathrm{Fe}^{3+}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
prussian blue
(4) $\mathrm{CuSO}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(Blue)
Q. 100 (1)
$2 \mathrm{Hg}^{2+}+\mathrm{SnCl}_{2} \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow$ (silky white) $+\mathrm{Sn}^{4+}$.
Q. 101 (4)
Q. 102 (2)

$$
3 \mathrm{Fe}^{2+}+2 \mathrm{k}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow \mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}
$$

turn bull's blue
ferroferri cyanide
Q. 103 (3)
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{4} \mathrm{OH} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$.
Q. 104 (2)
$\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \longrightarrow \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ brown colouration
$3 \mathrm{Fe}^{3+}+6 \mathrm{CH}_{3} \mathrm{COO}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ $\left[\mathrm{Fe}_{3}(\mathrm{OH})_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{6}\right]^{+}+2 \mathrm{H}^{+}$.

Q. 110 (4)

$\mathrm{Fe}^{3+}+3 \mathrm{SCN}^{-} \longrightarrow \mathrm{Fe}(\mathrm{SCN})_{3}$ (deep red colouration)
$\mathrm{Co}^{2+}+4 \mathrm{SCN}^{-} \xrightarrow{\text { amyl alcohol }}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-}$ (blue colouration)

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 \mathrm{SCN}^{-} \longrightarrow \mathrm{Cu}(\mathrm{SCN})_{2} \downarrow \text { (black) ; } \\
& 2 \mathrm{Cu}(\mathrm{SCN})_{2} \longrightarrow 2 \mathrm{CuSCN} \downarrow \text { (white) }+(\mathrm{SCN})_{2} .
\end{aligned}
$$

Q. 113 (3)
Q. 114 (1)
$\mathrm{Ni}^{2+}+\mathrm{DMG} \xrightarrow{\mathrm{NH}_{4} \mathrm{OH}}\left[\mathrm{Ni}(\mathrm{DMG})_{2}\right] \downarrow$ (red).
Q. 115 (4)
$\mathrm{Zn}^{2+}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2} \downarrow$ (white) $+2 \mathrm{NH}_{4}{ }^{+}$;
$\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Zn}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{ZnS}$ (white)
Q. 116 (4)
Zn^{2+} is colourless and borax bead test is given by coloured ions such as $\mathrm{Cu}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$ ect.
Q. 117 (3)
Q. 118 (3)
Q. 119 (4) $\mathrm{Mn}^{2+} \longrightarrow \mathrm{Mn}_{\mathrm{n}}\left(\mathrm{BO}_{2}\right)_{2}$ $\mathrm{Ni}_{\mathrm{i}}{ }^{2+} \longrightarrow$ Brown
$\mathrm{Fe}^{2+} \longrightarrow$ green

Q. 120 (3)

$\mathrm{NCl}_{3}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{Ca}_{3} \mathrm{~N}_{2}$
NCl_{5} is not possible because of absence of vacant d orbitall
Q. 111 (4)
$\mathrm{Fe}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow$ white precipitate $; \mathrm{Fe}^{3+}+$ $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \rightarrow$ Prussian blue precipitate.
$\mathrm{Zn}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4} \rightarrow\right.$ Bluish white/white precipitate ; $\mathrm{Cu}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow$ chocolate brown precipitate
$\mathrm{Ag}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4+} \rightarrow\right.$ white precipitate $; \mathrm{Ca}^{2+}+$ $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \rightarrow$ white precipitate.

Q. 112 (2)

On adding HCl the equilibrium will shift in backward direction.
Ni^{2+}

Zn^{2}

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)
$\mathrm{BaCO}_{3}+\mathrm{dil} \mathrm{HCl} \longrightarrow \mathrm{BaCl}_{2}$
(soluble)
$\mathrm{ZnS}+\mathrm{dil} \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}$
(soluble)
Q. 2 (C)
(A) $2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}+\mathrm{S} \downarrow$ (whiteyellow)
(B) $2 \mathrm{Fe}^{3+}+3 \mathrm{~S}^{2-} \longrightarrow 2 \mathrm{FeS} \downarrow$ (black) $+\mathrm{S} \downarrow$
(C) $\mathrm{Fe}^{3+}+3 \mathrm{SCN}^{-} \longrightarrow \mathrm{Fe}(\mathrm{SCN})_{3}$ deep red colouration
Q. 3 (C)

The one with highest value of Ksp will have highest value of solubility because for each given salt the expression of ksp
$\mathrm{ksp}=\mathrm{S}^{2}$
Q. 4 (D)
$\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>\mathrm{CuS}$
(Solubility in water)
Q. 5 (D)
$\mathrm{H}_{2} \mathrm{~S}$ in acidic medimum is group reagent for $2^{\text {nd }}$ group cation and hence they will be ppted only in the form of their sulphides
Q. 6 (D)
Q. 7 (C)
(I) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+8 \mathrm{H}^{+}+3 \mathrm{NO}_{2}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{NO}_{3}^{-}+$ $4 \mathrm{H}_{2} \mathrm{O}$.
(II) $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{HNO}_{2} \longrightarrow 2 \mathrm{~N}_{2} \uparrow+\mathrm{CO}_{2} \uparrow+$ $3 \mathrm{H}_{2} \mathrm{O}$.
(III) $\mathrm{HOSO}_{2} \cdot \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{~N}_{2} \uparrow+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$ $+\mathrm{H}_{2} \mathrm{O}$.
(IV) $\mathrm{NO}_{2}{ }^{-}$and $\mathrm{NO}_{3}{ }^{-}$both on reduction with $\mathrm{Zn} / \mathrm{NaOH}$ on warming gives ammonia gas.
Q. 8 (B)
$2 \mathrm{AgCl} \xrightarrow{h \nu} 2 \mathrm{Ag} \downarrow$ (black) $+\mathrm{Cl}_{2} \uparrow$.
Q. 9 (C)
$2 \mathrm{I}^{-}+\mathrm{Cl}_{2} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} . \mathrm{I}_{2}$ being covalent dissolves in chloroform giving purple or violet solution.
$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{BaSO}_{4} \downarrow$ (white).

Q. 10 (B)

$$
\mathrm{Pb}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{PbS} \downarrow
$$

(Black ppt)
Q. 11 (D)

Q. 12 (D)
BaSO_{4} is not dissolved
in dil. HCl .
Q. 13 (B)
$\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \uparrow$
(no residue)
\Rightarrow all are gases
Q. 14 (D)
Q. 15 (B)

$$
\mathrm{Fe}^{3+}+\mathrm{KCNS} \longrightarrow \begin{gathered}
{\left[\mathrm{Fe}(\mathrm{CNS})_{3}\right]} \\
\text { Blood red colour }
\end{gathered}
$$

Q. 16 (C)

$\mathrm{CoO}+\mathrm{B}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Co}\left(\mathrm{BO}_{2}\right)_{2}$ cobalt (II) metaborate (Blue)
Q. 17 (C)
Q. 18 (D)
(A) $\mathrm{Pb}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{PbS} \downarrow$ (black) $+2 \mathrm{H}^{+}$.
(B) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{H}_{2} \mathrm{~S}+8 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}$ (green colour solution) $+3 \mathrm{~S} \downarrow+7 \mathrm{H}_{2} \mathrm{O}$.
$(\mathrm{C}) \mathrm{S}^{2-}+\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]^{2-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-}$ (purple colouration).

Reactions: $\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{4} \downarrow+\mathrm{NaCl}$.
$\mathrm{BaSO}_{4}+4 \mathrm{C}+\mathrm{Na}_{2} \mathrm{CO}_{3} \xrightarrow{\text { Fuse }} \mathrm{Na}_{2} \mathrm{~S}+\mathrm{BaCO}_{3} \downarrow+$ $4 \mathrm{CO} \uparrow$.
$\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{~S}$.
Q. 19 (C)

Q. 20 (C)
PbSO_{4} (while ppt) is insoluble in water
Q. 21 (A)
MnO_{4}^{-}in acidic medium oxidises Fe^{2+} to Fe^{3+}.
Q. 22 (A)

$$
\underset{\substack{ \\\mathrm{HPO}_{4} \downarrow \\ \mathrm{PO}^{2-}}}{ }+\mathrm{Mg}^{2+}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{Mg}\left(\mathrm{NH}_{4}\right)
$$

(white ppt)
Q. 23 (A)
$\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}+\mathrm{H}_{2} \uparrow$
(A) (C)
(B)
$\mathrm{NaOH}+\mathrm{Zn} \longrightarrow \mathrm{Na}_{2}{ }^{\prime} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \uparrow$
(D)
(B)
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2} \downarrow$
$\Rightarrow \mathrm{Na}$ impats a deep golden yellow colour.
Q. 24 (A)

$$
2 \mathrm{CuS} \downarrow+8 \mathrm{CN}^{-} \longrightarrow 2\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}+\mathrm{S}_{2}^{2-}
$$

Q. 25 (C)
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \xrightarrow{\Delta} 2 \mathrm{NaBO}_{2}+\mathrm{B}_{2} \mathrm{O}_{3}$
$\mathrm{CuO}+\mathrm{B}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}$
$2 \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}+4 \mathrm{NaBO}_{2}+2 \mathrm{C} \xrightarrow{\Delta} 2 \mathrm{Cu}$ (red and opaque) $+2 \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+2 \mathrm{CO} \uparrow$
Q. 26 (A)

Q. 27 (A)

All are soluble except
AgCl which is sparingly soluble
\Rightarrow Low solubility \Rightarrow Low value of Ksp
Q. 28 (B)

Q. 29 (A)
$\mathrm{Hg}_{2}{ }^{2+}$
Q. 30 (C)
$\mathrm{H}_{2} \mathrm{~S}$ in acidic medimum is group reagent for $2^{\text {nd }}$ group cation and hence they will be ppted only in the form of their sulphides
Q. 31 (B)
$\mathrm{BaCl}_{2}+\mathrm{K}_{2} \mathrm{CrO}_{4} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow ppt)
(Insoluble in $\mathrm{CH}_{3} \mathrm{COOH}$
Ba imparts apple green colour to the flam
Q. 32 (C)
$\mathrm{CuO}+\mathrm{B}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{BO}_{2}\right)_{2}$
Q. 33 (A)
$\mathrm{Fe}^{3+}+3 \mathrm{SCN}^{-} \longrightarrow \mathrm{Fe}(\mathrm{SCN})_{3}$ (deep red colouration).
Q. 34 (D)

$$
\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { (green) }}{\mathrm{Cr}(\mathrm{OH})_{3} \downarrow}
$$

Q. 35 (B)

The gas must be NH_{3}, so can give brown precipitate of iodide of millon's base with potassium mercuric iodide.
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ is compound (A)
$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{NH}_{3} \uparrow+\mathrm{H}_{2} \mathrm{O}$.
$\mathrm{NH}_{4}^{+}+2\left[\mathrm{HgI}_{4}\right]^{2-}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{HgO} . \mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{I} \downarrow$ (brown) $+3 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{N}_{2} \mathrm{O}$ supports combustion.
$2 \mathrm{~N}_{2} \mathrm{O} \longrightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2}$.
Q. 36 (D)
(A) $\mathrm{Hg}_{2}{ }^{2+} \xrightarrow{\text { Dil HCl }} \mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow$ (white)

$$
\xrightarrow{\mathrm{NH}_{3}(\mathrm{aq})}
$$

$\underbrace{\mathrm{Hg} \downarrow \text { (black) })+\mathrm{Hg}\left(\mathrm{NH}_{2}\right) \mathrm{Cl} \downarrow \text { (white) }}$
Black
Q. 37 (C)
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Hg}<_{\mathrm{NH}_{2}}^{\mathrm{Cl}} \downarrow$ (white $)+\mathrm{Hg} \downarrow$ (black) $+\mathrm{NH}_{4} \mathrm{Cl}$
black
$\mathrm{Hg}_{2}{ }^{2+}+2 \Gamma \longrightarrow \mathrm{Hg}_{2} \mathrm{I}_{2} \downarrow$ (green)
Q. 38 (C)
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right]^{2+}$
(Brown ring complex)
Q. 39 (B)

Nessler's reagent
$\underset{2}{\mathrm{~K}_{2} \mathrm{HgI}_{4} / \mathrm{KOH}}$
$\underset{\mathrm{HgI}}{4}$
(anion)
Q. 40 (B)

After Add ${ }^{\text {n }}$ of NH_{3}
$\mathrm{Zn}^{2+}+\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(Aq.)
$\mathrm{Cu}^{2+}+\mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(Aq.)
$\mathrm{Fe}+\mathrm{NH}_{3} \longrightarrow \mathrm{X}$
Q. 41 (A)

Both belong to same group i.e. $\mathrm{II}^{\text {nd }}$ group and their $\mathrm{K}_{\text {SP }}$ values are low ; so both are precipitated according to the following reactions.

$$
\begin{aligned}
& 2 \mathrm{Bi}^{3+}+3 \mathrm{~S}^{2-} \longrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3} \downarrow \text { (black). } \\
& \mathrm{Sn}^{4+}+2 \mathrm{~S}^{2-} \longrightarrow \mathrm{SnS}_{2} \downarrow \text { (yellow). }
\end{aligned}
$$

Q. 42 (B)

The K_{SP} of $\mathrm{Al}(\mathrm{OH})_{3}$ is low as compared to that of the hydroxides of other metals. The OH^{-}concentration provided by ammonium hydroxide in presence of $\mathrm{NH}_{4} \mathrm{Cl}$ is just sufficient to precipitate Al^{3+} as $\mathrm{Al}(\mathrm{OH})_{3}$.
$\mathrm{Al}^{3+}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}} \mathrm{Al}(\mathrm{OH})_{3} \downarrow$ (gelatinous white) $+\mathrm{NH}_{4}^{+}$.

Q. 43 (D)

$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{CoO}$ formed in the test is blue in colour. It is called as thenard's blue.
Q. 44 (C)
$\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \longrightarrow \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (brown colouration).
Q. 45 (D)
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{+}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right]^{2-}+$ $\mathrm{NH}_{4}^{+}+\mathrm{CO}_{2}$
Q. 46 (D)
$\mathrm{Fe}^{2+}+2 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \longrightarrow \mathrm{~K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (white).
Q. 47 (C)
$\mathrm{Al}(\mathrm{OH})_{3} \xrightarrow[\mathrm{NaOH}]{\text { excess of }}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$ (Soluble colour less)
$\mathrm{Cr}(\mathrm{OH})_{3} \xrightarrow[\mathrm{NaOH}]{\mathrm{Xs} \text { of }}\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}$ (Soluble)
$\mathrm{Fe}(\mathrm{OH})_{3} \xrightarrow[\mathrm{NaOH}]{\mathrm{Xs} \text { of }}$ not soluble
$\mathrm{Zn}(\mathrm{OH})_{2} \xrightarrow[\mathrm{NaOH}]{\mathrm{Xs} \text { of }}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(Soluble)
Q. 48 (A)
$2 \mathrm{Cr}(\mathrm{OH})_{3}+3 \mathrm{Na}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{CrO}_{4}$ (yellow colour solution) $+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}$.
Q. 49 (A)
Cr^{3+} forms dark green chromium metaborate $\mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$ in oxidising flame (in cold).
Q. 50 (A)
Ni^{2+} and Fe^{2+} both on reaction with alkaline solution of dimethyl glyoxime give red precipitate and red solution respectively but not zinc.
Q. 51 (D)
$\mathrm{Ag}_{2} \mathrm{~S}+2 \mathrm{HCl} \longrightarrow \mathrm{AgCl} \downarrow+2 \mathrm{H}_{2} \mathrm{~S} ; \mathrm{HgS}$ is also insoluble in 2 N HCl so silver and mercury do not pass into filtrate while ZnS , MnS and FeS dissolve in 2 N HCl forming their soluble chlorides and thus pass into filtrate.

Q. 52 (B)

Brown ring test is a confirmating test
Q. 53 (A)

In excess of $\mathrm{NH}_{4} \mathrm{OH}$, precipitate of $\mathrm{Zn}(\mathrm{OH})_{2}$ gets dissolved.
$\mathrm{Zn}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}$.

Q. 54 (C)

$4 \mathrm{Zn}+10 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow 4 \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}+3 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2} \downarrow$ (white) $; \mathrm{Zn}(\mathrm{OH})_{2}+$
$2 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$.
$\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{ZnS} \downarrow$ (white) $+2 \mathrm{OH}^{-}+$ $2 \mathrm{H}_{2} \mathrm{O}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (AB)

$$
\text { (A) } 2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \text { (white) } \downarrow+\mathrm{I}_{2} \text {. }
$$

(B) $2 \mathrm{Cu}^{2+}+4 \mathrm{SCN}^{-}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{CuSCN} \downarrow$ (white) $+2 \mathrm{SCN}^{-}+\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}$.
(C) $\mathrm{Cu}^{2+}+6 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ (soluble complex $)+(\mathrm{CN})_{2}$.
(D) $\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2} \downarrow$ (blue).
Q. 2 (ABCD)
(A) $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{~S} \uparrow+2 \mathrm{Na}^{+}$. $; \mathrm{Na}_{2} \mathrm{SO}_{4}$ gives no reaction with $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(B) $2 \mathrm{MnO}_{4}^{-}$(pink solution) $+5 \mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \longrightarrow$ $2 \mathrm{Mn}^{2+}$ (colourless) $+5 \mathrm{~S} \downarrow+8 \mathrm{H}_{2} \mathrm{O}$.

No colour change is observed with $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
$(\mathrm{C}) \mathrm{S}^{2-}+\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]^{2-} \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-}$ (purple or violet colouration).

No colour change is observed with $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
(D) $\mathrm{S}^{2-}+\mathrm{Cd}^{2+} \longrightarrow \mathrm{CdS} \downarrow$ (yellow).
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ forms CdSO_{4} which is water soluble.

Q. 3 (ACD)

$\mathrm{CuS}, \mathrm{PbS}$ and $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ are black precipitates while $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ is orange coloured precipitate.
Q. 4 (AD)

Sulphides of Cu, Zn and Cd will be precipitated as if the solution is aqueous/alkaline (i.e., it is does not contain any acid). S^{2-} ion concentration obtained by $\mathrm{H}_{2} \mathrm{~S}$ in aqueous/alkaline solution is sufficient to precipitate all these metals as their sulphides.
Q. 5 (ABC)

Carbonates of alkali metals and ammonium are soluble in water. All other carbonates are insoluble in water.
Q. 6 (AD)
$\mathrm{SO}_{3}{ }^{2-}+\mathrm{Zn}+8 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{~S} \uparrow+3 \mathrm{Zn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Pb}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{PbS} \downarrow$ (black)
$\mathrm{Ag}^{+}+\mathrm{S}^{2-} \longrightarrow \mathrm{Ag}_{2} \mathrm{~S} \downarrow$ (black)
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{~S}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O}$

Q. 7 (BC)

(A) $\mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow \mathrm{CdS} \downarrow$ (yellow) $+2 \mathrm{H}^{+}$ (aq)
(B) $\mathrm{Co}_{3}{ }^{2-}+4 \mathrm{Hg}^{2+}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Hg}_{4} \mathrm{O}_{3} \mathrm{CO}_{3} \downarrow$ (red-dish-brown) $+6 \mathrm{H}^{+}$
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$ does not give precipitate.
(C) $\mathrm{SO}_{3}{ }^{2-}+3 \mathrm{Zn}+8 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{~S} \uparrow+3 \mathrm{Zn}^{2+}+3 \mathrm{H}_{2} \mathrm{O}$
(D) $5 \mathrm{SO}_{2}+2 \mathrm{IO}_{3}{ }^{-}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{I}_{2}+5 \mathrm{SO}_{4}{ }^{2-}+8 \mathrm{H}^{+}$
Q. 8 (ABD)
(A) $2 \mathrm{~Pb}^{2+}(\mathrm{aq})+2 \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow$
$\mathrm{Pb}(\mathrm{OH})_{2} \downarrow$ (white) $+\mathrm{PbCO}_{3} \downarrow$ (white) $+\mathrm{CO}_{2} \uparrow$
(B) $\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbBr}_{2} \downarrow$ (white)
(C) $2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow \mathrm{Ag}_{2} \mathrm{O} \downarrow$ (brown) $+2 \mathrm{NH}_{4}^{+}$
(D) $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl} \downarrow$ (white)
Q. 9 (AB)
(A) $\mathrm{Br}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{HBr} \uparrow ; 2 \mathrm{HBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$ $\mathrm{Br}_{2} \uparrow$ (reddish brown) $+\mathrm{SO}_{2} \uparrow+\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$.
(B) $4 \mathrm{NO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 4 \mathrm{NO}_{2} \uparrow$ (reddish brown) $+\mathrm{O}_{2} \uparrow+2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$.
(C) $\mathrm{SO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{SO}_{2} \uparrow$ (colourless) $+\mathrm{H}_{2} \mathrm{O}$.
(D) $3 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{I}_{3}^{-\uparrow}$ (violet/purple) $+\mathrm{SO}_{4}^{2-}$ $+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$.
Q. 10 (ABC)
(A) AgCl dissolves completely forming $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
; $\mathrm{AgCl}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}+2 \mathrm{H}_{2} \mathrm{O}$.
(B) AgBr dissolves completely forming $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]$

Br soluble complex.

$$
\mathrm{AgBr}+2 \mathrm{NH}_{4} \mathrm{OH}
$$

$\longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}+2 \mathrm{H}_{2} \mathrm{O}$.
(C) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}+4 \mathrm{NH}_{3} \longrightarrow 2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{CrO}_{4}{ }^{2-}$
(D) AgI is insoluble in concentrated aqueous NH_{3}.

Q. 11 (CD)

$\mathrm{Hg}_{2} \mathrm{I}_{2} \downarrow$ (green) $\xrightarrow[\text { with } \mathrm{H}_{2} \mathrm{O}]{\text { boiled }} \mathrm{HgI}_{2} \downarrow$ (red) +Hg
Disproportionation reaction occurs.

Q. 12 (AD)

$\mathrm{Co}^{2+}+7 \mathrm{NO}_{2}^{-}+3 \mathrm{~K}^{+}+2 \mathrm{H}^{+} \longrightarrow \mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right] \downarrow$ (yellow) $+\mathrm{NO} \downarrow+\mathrm{H}_{2} \mathrm{O}$.
So $[\mathrm{X}]$ is $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right.$. It is called Fischer's reagent ; $\left[\mathrm{Co}(\mathrm{III})\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$ has $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation and is diamagnetic. It's IUPAC name is potassium hexanitrito - N - cobaltate(III).

Q. 13 (ACD)

$2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CuI} \downarrow$ (white) $+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$ $+\mathrm{I}_{2}$
$3 \mathrm{SCN}^{-}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{CuSCN} \downarrow$ (white) $+(\mathrm{SCN})_{2}$
$6 \mathrm{CN}^{-}+\mathrm{Cu}^{2+} \longrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}+(\mathrm{CN})_{2}$

Q. 14 (ABCD)

$\mathrm{AgCl}+2 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Cl}^{-} ;$
$\mathrm{AgCl}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}+\mathrm{Cl}^{-}$.
$\mathrm{AgCl}+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$.
AgCl is soluble in concentrated solution of KCl .
$\mathrm{AgCl}+\mathrm{Cl}^{-} \longrightarrow\left[\mathrm{AgCl}_{2}\right]^{-}$(soluble complex)
Q. 15 (AC)
(A) $\mathrm{HPO}_{4}{ }^{2-}+3 \mathrm{NH}_{4}^{+}+12 \mathrm{MoO}_{4}{ }^{2-}+23 \mathrm{H}^{+}\left(\mathrm{HNO}_{3}\right)$
$\longrightarrow\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{P}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right] \downarrow$ (canary yellow/ yellow) $+12 \mathrm{H}_{2} \mathrm{O}$.
(C) $\mathrm{AsO}_{4}{ }^{3-}+12 \mathrm{MoO}_{4}{ }^{2-}+3 \mathrm{NH}_{4}^{+}+24 \mathrm{H}^{+}\left(\mathrm{HNO}_{3}\right)$

$$
\longrightarrow\left(\mathrm{NH}_{4}\right)_{3} \mathrm{AsMo}_{12} \mathrm{O}_{40} \downarrow \text { (yellow) }+12 \mathrm{H}_{2} \mathrm{O} .
$$

Q. 16 (BCD)
(A) $\mathrm{Ag}+2 \mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4} \downarrow$ (red) $[\mathrm{X}]$.
(B) $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \downarrow+4 \mathrm{NH}_{3} \longrightarrow 2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{CrO}_{4}^{2-}$
(C) $\mathrm{Cr}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3} \downarrow$ (green).
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \longrightarrow\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}$(green coloured soluble complex).
(D) $3 \stackrel{+4}{\mathrm{SO}_{2}}+\stackrel{+7}{\mathrm{C}} \mathrm{r}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}[\mathrm{Y}]+$ $3 \stackrel{+6}{\mathrm{SO}_{4}^{2-}}+\mathrm{H}_{2} \mathrm{O}$.

Q. 17 (AB)

(A) $3 \mathrm{AgCl} \downarrow+\mathrm{AsO}_{3}{ }^{3-} \longrightarrow \mathrm{Ag}_{3} \mathrm{AsO}_{3} \downarrow$ (yellow) + $3 \mathrm{Cl}^{-}$

AgI is unaffected by this treatment.
(B) $\mathrm{AgCl}+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$

AgI is not soluble in dilute ammonia solution.
(C) Both soluble in potassium cyanide, forming soluble complexes.
(D) Both insoluble in dilute HNO_{3}.
Q. 18 (ABC)
(A) $\mathrm{Mn}^{2+}+\mathrm{NH}_{3}+\mathrm{HPO}_{4}{ }^{2-} \longrightarrow \mathrm{Mn}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \downarrow$ (pink)
(B) $\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{2} \downarrow$ (white)

$$
2 \mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}(\mathrm{OH})_{2} \downarrow \text { (brown) }
$$

(C) $5 \mathrm{PbO}_{2}+2 \mathrm{Mn}^{2+}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{~Pb}^{2+}+$ $2 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{Mn}^{2+}+\mathrm{S}^{2-} \longrightarrow \mathrm{MnS} \downarrow$ (pink)
Q. 19 (BC)
(A) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \longrightarrow \mathrm{PbCl}_{2} \downarrow$ (white) + $2 \mathrm{NaNO}_{3}$

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \longrightarrow \mathrm{BaCl}_{2}+2 \mathrm{NaNO}_{3} ;
$$

BaCl_{2} is soluble in water
(B) $\mathrm{Na}_{2} \mathrm{SO}_{4}$ gives white precipitate of PbSO_{4} and BaSO_{4} with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ respectively.
(C) Disodium hydrogen phosphite gives white precipitate with both salts.

$$
\mathrm{HPO}_{3}{ }^{2-}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaHPO}_{3} \downarrow \text { (white) } ; \mathrm{HPO}_{3}{ }^{2}
$$

$+\mathrm{Pb}^{2+} \longrightarrow \mathrm{PbHPO}_{3} \downarrow$ (white)
(D) $\mathrm{Pb}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{PbCrO}_{4} \downarrow$ (yellow); $\mathrm{Ba}^{2+}+$
$\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow)

Q. 20 (ABCD)

(A) $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \downarrow$
; $\mathrm{AgCl}+\mathrm{Cl}^{-} \longrightarrow\left[\mathrm{AgCl}_{2}\right]^{-}$(soluble complex).
(B) $\mathrm{Cu}^{2+}+2 \mathrm{CN}^{-} \longrightarrow \mathrm{Cu}(\mathrm{CN})_{2} \downarrow$ (yellow).;
$\mathrm{Cu}(\mathrm{CN})_{2} \downarrow \longrightarrow 2 \mathrm{CuCN} \downarrow$ (white) $+(\mathrm{CN})_{2}$.
(C) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Co}+2 \mathrm{NH}_{4} \mathrm{SCN} \longrightarrow \mathrm{Co}(\mathrm{SCN})_{2}+$ $2 \mathrm{CH}_{3} \mathrm{COONH}_{4}$.

$$
\mathrm{Hg}^{2+}+\mathrm{Co}^{2+}+4 \mathrm{SCN}^{-} \longrightarrow \mathrm{Co}\left[\mathrm{Hg}(\mathrm{SCN})_{4}\right] \downarrow
$$

(deep-blue).
(D) $\mathrm{BiI}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{BiOI} \downarrow$ (orange) $+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$
Q. 21 (ABCD)
(A) $\mathrm{Hg}^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{HgI}_{2} \downarrow$ (red).
(B) $\mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \longrightarrow \mathrm{PbI}_{2} \downarrow$ (yellow).
(C) $\mathrm{Ag}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{AgI} \downarrow$ (bright yellow).
(D) $\mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow$ (white) $+\mathrm{I}_{2}$
Q. 22 (AC)
$2 \mathrm{As}^{3+}+3 \mathrm{~S}^{2-} \xrightarrow{\mathrm{H}^{+}} \mathrm{As}_{2} \mathrm{~S}_{3} \downarrow$ (yellow) $; 2 \mathrm{Sn}^{4+}+2 \mathrm{~S}^{2-}$ $\xrightarrow{\mathrm{H}^{+}} \mathrm{SnS}_{2} \downarrow$ (yellow).
SnS is brown and $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ is orange coloured precipitates.

Q. 23 (ACD)

Coloured transition metal salts which are mostly paramagnetic, give coloured meta borates with borax on heating in oxidising flame.

Q. 24 (AD)

(A) Fe^{2+} responds to this test but not $\mathrm{Fe}^{3+} ; \mathrm{Fe}$ (II) gives soluble red iron(II) dimethylglyoxime in alkaline solution.
(D) $\mathrm{Ag}_{2} \mathrm{O} \downarrow+4 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+$ $2 \mathrm{OH}^{-}$

$$
\mathrm{Ag}_{2} \mathrm{O} \downarrow+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Ag}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

(B) and (C) are correct statements.

Q. 25 (AD)

(B) $\mathrm{Cd}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cd}(\mathrm{OH})_{2} \downarrow$ (white). ; $\mathrm{Cd}(\mathrm{OH})_{2}$ is insoluble in excess reagent.
(D) $\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mn}\left(\mathrm{OH}_{2}\right) \downarrow$ (white); $\mathrm{Mn}(\mathrm{OH})_{2}$ is insoluble in excess reagent but precipitate turns to brown slowly on exposure to air forming hydrated manganese dioxide.
$2 \mathrm{Mn}(\mathrm{OH})_{2} \downarrow+\mathrm{O}_{2} \longrightarrow 2 \mathrm{MnO}(\mathrm{OH})_{2} \downarrow$ (brown).
Q. 26 (BD)
(A) Red colour solution or precipitate is produced when reagent reacts in alkaline solution.
(B) HO. $\mathrm{SO}_{2} \cdot \mathrm{NH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}$ $+\mathrm{H}_{2} \mathrm{O}$.
(C) $\mathrm{Fe}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \longrightarrow \mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$.

$$
4 \mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \downarrow
$$

(Turnbull's blue).
(D) $4 \mathrm{Cr}(\mathrm{OH})_{3} \downarrow+5 \mathrm{O}_{2}{ }^{2-} \longrightarrow 4 \mathrm{CrO}_{4}{ }^{2-}$ (yellow solution) $+6 \mathrm{H}_{2} \mathrm{O}$.

Q. 27 (ABC)

(A) $\mathrm{Cu}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (brown).
(B) $\mathrm{Ca}^{2+}+2 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow 2 \mathrm{~K}^{+}$ $\mathrm{Ca}^{2+}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (white).
(C) $3 \mathrm{Zn}^{2+}+2 \mathrm{~K}^{+}+2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow$ $\mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2} \downarrow$ (white/bluish-white).
(D) $\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ (prussian blue).
Q. 28 (ABCD)
(A) $\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+2 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(B) $\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
(C) \& (D) White precipitate of $\mathrm{Zn}(\mathrm{OH})_{2}$ dissolves in excess of ammonia solution and in solutions of ammonium salts owing to the production of tetraamminezincate(II).

$$
\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+4 \mathrm{NH}_{3}
$$

$\rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}$
Q. 29 (D)

As bottle $2+$ bottle 3 give colourless, odourless gas, it may be carbon dioxide. Generally carbonates are decomposed by acids giving CO_{2} gas.It suggests bottle

2 and 3 contain sodium carbonate and HCl .
Bottle $3+4$ gives blue precipitate which confirms the Cu^{2+} in either of bottles. $\mathrm{CuSO}_{4}, \mathrm{CuCl}_{2}$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ are soluble and CuCO_{3} is insoluble in water as evident from the reaction.
$\mathrm{Cu}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{CuCO}_{3} \downarrow$ (blue). Thus blue precipitate must be of copper carbonate.
Hence, bottle 4 is $\mathrm{CuSO}_{4}, 3$ is $\mathrm{Na}_{2} \mathrm{CO}_{3}, 2$ is HCl (from above) and 1 is $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ as it gives white precipitate of PbCl_{2} with bottle (2).
Note : $\mathrm{PbNO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl solutions are colourless but CuSO_{4} is blue colour solution.
Q. 30 (A)
(A) $2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow$ (white) $+\mathrm{I}_{2}$
(B) $2 \mathrm{Cu}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (chocolate brown)
(C) $\mathrm{Pb}^{2+}+4 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}$ (colourless soluble complex); $\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2} \downarrow$ (blue).
(D) $\mathrm{Pb}^{2+}+4 \mathrm{Cl}^{-} \longrightarrow\left[\mathrm{PbCl}_{4}\right]^{2-} \downarrow$ (colourless soluble complex).
Q. 31 (D)

Bottle 4 is CuSO_{4} and that gives deep blue colouration with excess of ammonia solution.
$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (intensive deep blue colour) (aq)

Q. 32 (D)

$\mathrm{Pb}^{2+}+\mathrm{CO}_{3}{ }^{2-} \longrightarrow \mathrm{PbCO}_{3} \downarrow$ (white)
$\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{PbCl}_{2} \downarrow$ (white)
$\mathrm{Pb}^{2+}+\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{PbSO}_{4} \downarrow$ (white)
Comprehension \# 2 (Q. No. 33 to 35)
Q. 33 (C)
Q. 34 (C)
Q. 35 (D)

Comprehension \# 3 (Q. No. 36 to 38)
Q. 36 (C)
$\mathrm{Bi}^{3+}+3 \mathrm{I}^{-} \rightarrow \mathrm{BiI}_{3} \downarrow$ (black); $\mathrm{BiI}_{3} \downarrow$ (black) $+\mathrm{I}^{-} \rightarrow$ $\left[\mathrm{BiI}_{4}\right]^{-}$(orange colour solution)

Q. 37 (B)

Black precipitate of BiI_{3} on heating with water turns orange

$$
\mathrm{BiI}_{3} \downarrow+\mathrm{H}_{2} \mathrm{O} \longrightarrow
$$

$\mathrm{BiOI} \downarrow+2 \mathrm{H}^{+}+2 \mathrm{I}^{-}$
Q. 38 (D)
(A) $\mathrm{Cl}^{-}+\mathrm{Ag} \longrightarrow \mathrm{AgCl} \downarrow$ (white) $; 3 \mathrm{AgCl}+\mathrm{AsO}_{3}^{3-}$
$\longrightarrow \mathrm{Ag}_{3} \mathrm{AsO}_{3} \downarrow$ (yellow) $+3 \mathrm{Cl}^{-}$
(B) $\mathrm{Bi}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Bi}(\mathrm{OH})_{3}$ (white) ; $\mathrm{Bi}(\mathrm{OH})_{3}$
$\xrightarrow{\Delta} \mathrm{BiO} . \mathrm{OH} \downarrow$ (yellowish-white) $+\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{BiOCl} \downarrow$ (white) $+2 \mathrm{H}^{+} \longrightarrow \mathrm{Bi}^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-}$

Reaction involved in comprehension :

$2 \mathrm{Bi}^{3+}(\mathrm{A})+3 \mathrm{H}_{2} \mathrm{~S} \xrightarrow{\mathrm{H}^{+}} \mathrm{Bi}_{2} \mathrm{~S}_{3} \downarrow$ (black) $(\mathrm{B})+6$
H^{+}
$\mathrm{Bi}_{2} \mathrm{~S}_{3}+8 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{C})+2 \mathrm{NO}+3 \mathrm{~S}+$ $4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Bi}^{3+}+3 \mathrm{OH}^{-} \xrightarrow{\mathrm{NaOH}} \mathrm{Bi}(\mathrm{OH})_{3} \downarrow$ (white) $; 2 \mathrm{Bi}(\mathrm{OH})_{3}$
\downarrow (white) $+3\left[\mathrm{Sn}(\mathrm{OH})_{4}\right]^{2-} \longrightarrow 2 \mathrm{Bi} \downarrow(\mathrm{D})+$ $3\left[\mathrm{Sn}(\mathrm{OH})_{6}\right]^{2-}$
$\mathrm{Bi}^{3+}+3 \mathrm{OH}^{-} \xrightarrow{\mathrm{NH}_{4} \mathrm{OH}} \mathrm{Bi}(\mathrm{OH})_{3} \downarrow$ (white);
$\mathrm{Bi}(\mathrm{OH})_{3} \downarrow$ (white) $+3 \mathrm{HCl} \longrightarrow \mathrm{BiCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{BiCl}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{BiOCl} \downarrow$ (bismuth oxychloride) (E) +2 HCl
$4 \mathrm{NaCl}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.) \longrightarrow
$2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}$ (deep red vapours) $+2 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+$ $3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{CrO}_{4}{ }^{2-}+\mathrm{Ba}^{2+} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow).
Q. 39 (C)
Q. 40 (B)
Q. 41 (D)
Q. 42 (B)

Sample $\xrightarrow{\mathrm{NaCl}}$ Precipitate ' A ' insoluble chloride $(\mathrm{AgCl})+$ Filtrate $\left(\mathrm{Ba}^{2+}\right.$ and $\left.\mathrm{Zn}^{2+}\right)$

$\mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2} \longrightarrow \mathrm{BaSO}_{4} \downarrow$ (white); Ba^{2+} salts give apple gree colour to the Bunsen flame.
$\mathrm{Zn}^{2+}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2} \downarrow$ (white) + $2 \mathrm{NH}_{4} \uparrow$
$\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+4 \mathrm{NH}_{4} \rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}$

Q. 43 (B)

(A) $\mathrm{AgCl}+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$ soluble complex
(B) 2 M HCl is group reagent of $1^{\text {st }}$ group but in concentrated HCl AgCl dissolves forming $\left[\mathrm{AgCl}_{2}\right]^{-}$ complex
(C) $\mathrm{AgCl}+2 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$(soluble complex) $+\mathrm{Cl}^{-}$
(D) $\mathrm{AgCl}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-} \quad$ (soluble complex) $+\mathrm{Cl}^{-}$
Q. 44 (D)
(A) $\mathrm{CoO} \cdot \mathrm{ZnO}=$ Rinmann's green reagent used as green pigment.
(B) $\mathrm{BaSO}_{4} \downarrow+\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc.) $\longrightarrow \mathrm{Ba}^{2+}+\mathrm{HSO}_{4}^{-}$
(C) $2 \mathrm{AgCl} \downarrow$ (white) $\xrightarrow{\mathrm{h} \nu} 2 \mathrm{Ag} \downarrow$ (black) $+\mathrm{Cl}_{2} \uparrow$
Q. $45(\mathrm{~A}-\mathrm{p}, \mathrm{r})$; $(\mathrm{B}-\mathrm{p}, \mathrm{q}) ;(\mathrm{C}-\mathrm{p}, \mathrm{s}) ;(\mathrm{D}-\mathrm{q}, \mathrm{s})$
(A) $\quad 2 \mathrm{Bi}^{3+}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Bi}_{2} \mathrm{~S}_{3} \downarrow$ (black) $+6 \mathrm{H}^{+}$
$\mathrm{Bi}^{3+}+3 \mathrm{I}^{-} \longrightarrow \mathrm{BiI}_{3} \downarrow$ (black)
(B) $\quad \mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{CuS} \downarrow$ (black) $+2 \mathrm{H}^{+}$
$\mathrm{Cu}^{2+}+2 \mathrm{SCN}^{-} \longrightarrow \mathrm{Cu}(\mathrm{SCN})_{2} \downarrow$ (black)
$2 \mathrm{Cu}(\mathrm{SCN})_{2} \longrightarrow 2 \mathrm{CuSCN} \downarrow$ (white $)+(\mathrm{SCN})_{2} \uparrow$.
$2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2} \downarrow$ (white) $+\mathrm{I}_{2} \uparrow$.
$2 \mathrm{Cu}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (brown).
(C) $\mathrm{Zn}^{2+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{ZnS} \downarrow$ (white) $+2 \mathrm{H}^{+}$
$2 \mathrm{~K}^{+}+2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+3 \mathrm{Zn}^{2+} \longrightarrow \mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$ \downarrow (white)
$\mathrm{ZnI}_{2} \longrightarrow$ soluble
(D) $\quad 4 \mathrm{Ag}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \longrightarrow \mathrm{Ag}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \downarrow$ (white)
$\mathrm{Ag}^{+}+\mathrm{SCN}^{-} \longrightarrow \mathrm{AgSCN} \downarrow$ (white)
$\mathrm{Ag}_{2} \mathrm{~S} \downarrow$ black ; $\mathrm{AgI} \downarrow$ (yellow)
Q. 46 (A - p,q,r ; B - r,s ; C - p,q,s,t ; D - p,s)
(A) $\quad \mathrm{AgCl} \downarrow+\mathrm{Cl}^{-} \longrightarrow\left[\mathrm{AgCl}_{2}\right]^{-}$soluble complex.
$\mathrm{AgCl} \downarrow+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$
$\mathrm{AgCl} \downarrow+2 \mathrm{CN}^{-} \rightleftharpoons\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}+\mathrm{Cl}^{-}$
AgCl is insoluble in dilute HNO_{3}.
(B)
$2 \mathrm{CuS} \downarrow+8 \mathrm{CN}^{-} \longrightarrow 2\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}+\mathrm{S}_{2}{ }^{2-}$.
$3 \mathrm{CuS} \downarrow+8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{Cu}^{2+}+6 \mathrm{NO}_{3}^{-}+3 \mathrm{~S} \downarrow+$ $2 \mathrm{NO} \uparrow+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{S} \downarrow+2 \mathrm{HNO}_{3} \xrightarrow[\text { longer time }]{\text { boiled for }} 2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}+2 \mathrm{NO} \uparrow$
(C) $\quad \mathrm{Zn}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{Zn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Zn}^{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+2 \mathrm{OH}^{-}$
$\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+2 \mathrm{OH}^{-} \longrightarrow\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]^{2-}$
(D) $\quad \mathrm{BaCO}_{3}+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
BaCO_{3} is slightly soluble in solution of ammonium salts of strong acids only.
Q. 47 (A) p,q; (B) r; (C) p,q,s; (D) p,q,s
Q. 48 (A) - p,q; (B) - p,s ; (C) - s ; (D) - p,r
(A) Mn^{2+} meta borate \longrightarrow Amethyst red $\mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{2} \downarrow$ (white) $\mathrm{Mn}(\mathrm{OH})_{2} \downarrow$ (white) $+\mathrm{O}_{2}$ (air) $\longrightarrow 2 \mathrm{MnO}\left(\mathrm{OH}_{2}\right) \downarrow$ (brown)
(B) Cr^{3+} metaborate \longrightarrow Green
$\mathrm{Cr}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3} \downarrow$ (green)
$\mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \longrightarrow\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}$(green coloured soluble complex).
$\left[\mathrm{Cr}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}(\mathrm{OH})_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Cr}(\mathrm{OH})_{3} \downarrow+3 \mathrm{H}^{+} \downarrow \longrightarrow \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}^{3}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3} \downarrow$ (white)
$\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \longrightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$(colourless soluble complex).
$\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{Al}(\mathrm{OH})_{3} \downarrow+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+} \downarrow \longrightarrow \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$
(D) Fe^{3+} metaborate \longrightarrow Pale yellow
$\mathrm{Fe}^{3+}+3 \mathrm{CN}^{-} \longrightarrow \mathrm{Fe}(\mathrm{CN})_{3} \downarrow$ (reddish brown)
$\left.\mathrm{Fe}(\mathrm{CN})^{3} \downarrow+3 \mathrm{CN}^{-} \longrightarrow \mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ (yellow colour soluble complex).
$\mathrm{Fe}^{3+}+3 \mathrm{OH}^{-} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3} \downarrow$ (reddish brown).
Q. 49 (A-t), (B-r), (C-p,s), (D-p,q), (E-s).
(A) $\quad \mathrm{Fe}^{3+}+3 \mathrm{NH}_{3}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3} \downarrow$ (reddish brown) ;
$\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (deep blue solution)
$3 \mathrm{Zn}^{2+}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{Zn}(\mathrm{OH})_{2} \downarrow$ (white) + $2 \mathrm{NH}_{4}{ }^{+}$.
$\mathrm{Zn}(\mathrm{OH})_{2} \downarrow+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (colourless) $+2 \mathrm{OH}^{-}$.
(B) All dissolves in $50 \% \mathrm{HNO}_{3}$ forming soluble nitrates, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$.
(C) $\quad \mathrm{Pb}^{2+}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2} \downarrow$ (yellow) $+2 \mathrm{~K}^{+} ; \mathrm{Pb}^{2+}+\mathrm{K}_{2} \mathrm{CrO}_{4}$
$\rightarrow \mathrm{PbCrO}_{4} \downarrow$ (yellow) $+2 \mathrm{~K}^{+}$
(D) $\quad \mathrm{Bi}^{3+}+3 \mathrm{KI} \rightarrow \mathrm{BiI}_{3} \downarrow$ (black) $+3 \mathrm{~K}^{+}$
$\mathrm{BiCl}_{3}+3 \mathrm{Na}_{2} \mathrm{SnO}_{2}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Bi} \downarrow$ (black) +3
$\mathrm{Na}_{2} \mathrm{SnO}_{3}+6 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$
(E) $\mathrm{Ag}^{+}+\mathrm{I}^{-} \longrightarrow \mathrm{AgI} \downarrow$ (yellow); $\mathrm{Ag}^{+}+\mathrm{Na}_{2} \mathrm{SnO}_{2}$
$\xrightarrow{\mathrm{OH}^{-}}$Black or brown precipitate.
$2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4} \downarrow$ (red)
Q. 50 (A) s; (B) p,q,r,s ; (C) p,s; (D) p

JEE-ADVANCED
 INTEGER TYPE

Q. 1 (3)

$\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{PbCl}_{2} \downarrow$ (white) $; \mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{Cl}^{-}$
$\longrightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow$ (white)
$\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \downarrow$ (white)
$K_{\text {sp }}$ of chlorides of Pb^{2+} and $\mathrm{Hg}_{2}{ }^{2+}$ is low as compared to K_{sp} of Hg^{2+} and Cd^{2+}. Chloride ion concentration provided by dilute HCl is just enough to exceed the $\mathrm{K}_{\text {sp }}$ of PbCl_{2} and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$. Thus Pb^{2+} and $\mathrm{Hg}_{2}{ }^{2+}$ are precipitated as their chlorides.
Q. 2 (4)

$$
\mathrm{Hg}^{2+}+\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]^{2-} \longrightarrow \longrightarrow \underset{\substack{\text { deep blue crystalline } \\ \text { precipitate }}}{\mathrm{Co}\left[\mathrm{Hg}(\mathrm{SCN})_{4} \downarrow\right.}
$$

Q. 3 (3)

$$
\mathrm{As}^{3+}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{As}_{3} \mathrm{~S}_{3} \downarrow
$$

$$
\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{S}_{2}^{2-} \longrightarrow \mathrm{AsS}_{4}^{3-}+\mathrm{S}_{3}^{2-}
$$

Oxidation state of sulphur $-2,-1,0$.
Q. 4 (4)

$$
\mathrm{FeSO}_{4}+\underset{\text { (excess) }}{6 \mathrm{KCN}} \xrightarrow{\Delta} \mathrm{~K}_{4}\left[\underset{(\mathrm{X})}{\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}
$$

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\underset{\text { (Conc.) }}{6 \mathrm{H}_{2} \mathrm{SO}_{4}}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{FeSO}_{4}+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\underset{(\mathrm{Y})}{6 \mathrm{CO}} \uparrow
$$

$$
\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\underset{\text { (diulu) })}{3 \mathrm{H}_{2} \mathrm{SO}_{4}} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{FeSO}_{4}+6 \underset{(Z)}{6 \mathrm{HCN} \uparrow}
$$

$\operatorname{Gas}(\mathrm{Y})-\mathrm{C}^{+} \equiv \mathrm{O}^{-} \longrightarrow 2 \mathrm{p} \pi-\mathrm{p} \pi$ bond
$\operatorname{Gas}(\mathrm{Z})-\mathrm{H}-\mathrm{C} \equiv \mathrm{N} \longrightarrow 2 \mathrm{p} \pi$-p π bond
Sum of $\mathrm{p} \pi-\mathrm{p} \pi$ bonds $=4$
Q. 5 (2)

$$
\mathrm{Ni}^{2+}+2 \mathrm{dmg} \xrightarrow{\mathrm{NH}_{4} \mathrm{OH}}\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right] \downarrow \text { (bright red). }
$$

rosy red ppt

Q. 6 (3)

(a) $\mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-} \longrightarrow \mathrm{BaCrO}_{4} \downarrow$ (yellow
(b) $\mathrm{NH}_{4}^{+}+\mathrm{PtCl}_{6}^{2-} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Pt}\left(\mathrm{Cl}_{6}\right) \downarrow\right.$ (yellow)
(c) $\mathrm{NH}_{4}^{+}+\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-} \longrightarrow\left(\mathrm{NH}_{4}\right)_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6} \downarrow\right.$ (yellow)
(d) $\mathrm{Ca}^{2+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4}+\mathrm{K}^{+} \longrightarrow \mathrm{K}_{2} \mathrm{Ca}\left[\mathrm{Fe}(\mathrm{CN})_{6} \downarrow\right.\right.$ (white)
(e) $\mathrm{Sr}^{2+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{SrCO}_{3} \downarrow$ (white)
Q. 7 (3)

$$
\mathrm{Ag}^{+}+2 \mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} .
$$

Colourless solution

- $\mathrm{Pb}^{2+}+2 \mathrm{NH}_{4} \mathrm{OH} \longrightarrow \mathrm{Pb}(\mathrm{OH})_{2} \downarrow$

White ppt

- $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (excess) Dark blue solution
$\mathrm{Cd}^{2+}+2 \mathrm{NH}_{3}(\mathrm{aq}) \longrightarrow\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ Colourless solution
$\mathrm{Zn}^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}\right.$
Colourless solution
- $\mathrm{Ni}^{2+}+6 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ Dark blue solution
Q. 8 (20)

Aq. CuSO_{4} (blue) $+\mathrm{KCN} \longrightarrow \mathrm{Cu}(\mathrm{CN})_{2} \downarrow+\mathrm{K}_{2} \mathrm{SO}_{4}$
$\mathrm{Cu}(\mathrm{CN})_{2} \downarrow \longrightarrow \mathrm{CuCN} \downarrow+(\mathrm{CN})_{2} \uparrow$
$\mathrm{CuCN} \downarrow+\mathrm{CN}^{-} \longrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ (colourless soluble complex)
$\mathrm{A}=\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ (colourless soluble complex)
$\mathrm{a}=0\left(\mathrm{sp}^{3}\right) ; \mathrm{c}=4$
$8 a+5 c=20$

Q. 9 (9)

$\mathrm{Co}^{2+}+\mathrm{CN}^{-} \longrightarrow \mathrm{Co}(\mathrm{CN})_{2}$
$\mathrm{Co}(\mathrm{CN})_{2}+4 \mathrm{CN}^{-} \longrightarrow\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{+}$
$\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4+}+\mathrm{O}_{2} \longrightarrow\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
$\mathrm{Co}^{3+} \Rightarrow \mathrm{d}^{6}$
Q. 10 (5)
(i), (ii), (iv), (v), (vi)
(i) $\mathrm{NaBr}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgBr} \downarrow+\mathrm{NaNO}_{3}$ Pale Yellow
(ii) $\mathrm{NaI}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgI} \downarrow+\mathrm{NaNO}_{3}$ Yellow
(iii) $\quad \mathrm{NaBr}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{PbBr}_{2} \downarrow+\mathrm{NaNO}_{3}$ Brown
(iv) $\quad \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{PbI}_{2} \downarrow+\mathrm{NaNO}_{3}$
Yellow
(v) $\quad \mathrm{Na}_{2} \mathrm{~S}+\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \longrightarrow \mathrm{CdS} \downarrow+$ $\mathrm{CH}_{3} \mathrm{COONa}$
Yellow
(vi) $\quad \mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \longrightarrow \mathrm{PbCrO}_{4} \downarrow+$ $\mathrm{CH}_{3} \mathrm{COOK}$
Yellow
(vii) $\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{AgNO}_{3} \longrightarrow \underset{\text { Brick red }}{\mathrm{Ag}_{2} \mathrm{CrO}_{4} \downarrow}+\mathrm{KNO}_{3}$
(viii) $\mathrm{NaBr}+$ Chlorine water $\longrightarrow 2 \mathrm{BrCl}$
(excess) reddish brown gas

Q. 11 (3)

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{NH}_{3} \uparrow \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} \mathrm{NH}_{3} \uparrow+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NH}_{4} \mathrm{Cl} \xrightarrow{\Delta} \mathrm{NH}_{3} \uparrow+\mathrm{HCl} \\
& \mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O} \uparrow+\mathrm{H}_{2} \mathrm{O} \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2} \uparrow+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Q. 12 (9)

Q. 13 (6)

$$
\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{HCO}_{3}^{-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{NO}_{2}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}
$$

Q. 14 (3)
$\mathrm{NO}_{2}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{SO}_{3}^{2-}, \mathrm{HCO}_{3}^{-}$
Q. 15 (3)
$\mathrm{X} \equiv \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
Stereoisomer $=0$ [no G.I. and no O.I]
NOS has three donar atom ($\mathrm{O}, \mathrm{N}, \mathrm{S}$).
Q. 16 (0)
$\mathrm{X} \equiv \stackrel{\mathrm{VI}}{\mathrm{CrO}_{2} \mathrm{Cl}_{2}} \quad$ "sp"
Q. 17 (4)
$\mathrm{X} \equiv\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$
$\mathrm{Fe}^{+1} \Rightarrow \mathrm{~d}^{7}$

$1 L$	$1 L$	1	1	1
$n=3$				

$\mu=\sqrt{3(3+2)}=\sqrt{15}=$
$3.87 \approx 4$
Q. 18 (1)
$\mathrm{NO}_{2}{ }^{-} \xrightarrow{\mathrm{H}^{+}}\left[\mathrm{HNO}_{2}\right] \longrightarrow \mathrm{HNO}_{3}+\mathrm{NO} \uparrow$
2 NO (Colorless) $+\mathrm{O}_{2}$ (air) $\longrightarrow 2 \mathrm{NO}_{2}$ (reddish brown)
Q. 19 (5)
$\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{AgCl}, \mathrm{AgNO}_{2}, \mathrm{Ag}_{2} \mathrm{SO}_{3}, \mathrm{CH}_{3} \mathrm{COOAg} \Rightarrow$ white $\mathrm{AgBr} \rightarrow$ yellow
Q. 20 (3)
$\mathrm{A} \equiv\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BO}_{3}$
Q. 21 (14)
$\mathrm{X}=\mathrm{Cl}_{2}$
$\mathrm{Y}=\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
$\mathrm{a}=1-0-(-1)=1, \mathrm{~b}=2+5=7$
$\mathrm{c}=6$
$a+b+c=14$

KVPY
 PREVIOUS YEAR'S

Q. 1 (D)

$\mathrm{H}_{2} \mathrm{~S}$ gas is passed through a hot acidic aqueous solution containing $\mathrm{Al}^{+3}, \mathrm{Cu}^{+2}, \mathrm{~Pb}^{+2}$ and Ni^{+2}

II group elements give $\mathrm{ppt} \rightarrow \mathrm{CuS}, \mathrm{PbS}$

$\mathrm{Pb}^{2+} \mathrm{Cu}^{2+} \mathrm{Cd}^{2+} \mathrm{Bi}^{2+} \mathrm{Hg}^{2+} \mathrm{As}^{3+} \mathrm{Sb}^{3+} \mathrm{Sn}^{2+} \mathrm{Sn}^{4+}$
Q. 2 (C)

$$
\begin{aligned}
& \mathrm{MnO}_{2}+\underset{\text { conc. }}{\mathrm{HCl}} \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})(\mathrm{x}) \\
& \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaOCl}_{2}(\mathrm{y}) \\
& \mathrm{CaOCl}_{2}+\text { dil. } \mathrm{HCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Q. 3 (C)
$2 \mathrm{KI}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{I}_{2}+2 \mathrm{NO}_{2}+2 \mathrm{KNO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
Iodide ion is a strong reducing agent and reduces HNO_{3} vapours to NO_{2} (Brown gas)

JEE MAIN

PREVIOUS YEAR'S

Q. 1
 (3)

Q. 2 (1)

Q. 3 (2)

Q. 4 (3)
Q. 5 (1)
Q. 6 (2)
Q. 7 [4]
Q. 8 (2)
$\mathrm{Mn}^{2+} \rightarrow \mathrm{IV}$ group
$\mathrm{As}^{3+} \rightarrow$ II B group
$\mathrm{Cu}^{2+} \rightarrow$ II A group
$\mathrm{Al}^{3+} \rightarrow$ III group

Q. 9 (3)

Oxides of nitrogen and sulphur are acidic and settle down on ground as dry deposition.
Ammonium salts in rain drops result in wet deposition
Q. 10 (4)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 (A)
Q. 2 (C)
$\mathrm{Cu}(\mathrm{M})+\mathrm{AgNO}_{3}(\mathrm{~N})$ (aqueous colourless solution) \longrightarrow Resultant solution contains $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (blue solution) and AgNO_{3}
(colourless solution)

(N)

Note: Here it is considered that complete AgNO_{3} is not utilized in the reaction.
$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \longrightarrow \mathrm{AgCl} \downarrow$ (white $)(\mathrm{O})+$ NaNO_{3}
Solution containing white ppt. of AgCl also contains $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ which developed deep blue colouration with aqueous NH_{3} solution
$\mathrm{AgCl} \downarrow$ (white) $+2 \mathrm{NH}_{3}$ (aq.) $\longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (aq.) $+4 \mathrm{NH}_{3}$ (aq.) $\longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (deep blue solution)

So, Metal rod M is Cu .
The compound N is AgNO_{3} and the final solution contains $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Q. 3 (B)

Metal $\operatorname{rod} \mathrm{M}$ is Cu
Q. 4 (A)

In presence of acidic medium, ionisation of $\mathrm{H}_{2} \mathrm{~S}$ is supressed so less number of S^{2-} ions are produced. So only those sulphides are precipitated which have low solubility product (K_{sp}) value, For example CuS and HgS .
Q. 5 (ACD)

Q. 6 (B)
HNO_{3} decomposes by giving $\mathrm{NO}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$
$4 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+3 \mathrm{O}_{2}$
So, Ans is (B).
Q. 7 (D)

Ammoniacal $\mathrm{H}_{2} \mathrm{~S}$ is group reagent of fourth group cationic radicals. Fe^{3+} \& Al^{3+} will precipitate $\mathrm{Fe}(\mathrm{OH})_{3}$ and $\mathrm{Al}(\mathrm{OH})_{3}$ respectively. Only Zinc will form white precipitate of ZnS .
Q. 8 (A)

$$
\mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \underset{\text { soluble in hot water }}{\longrightarrow} \mathrm{PbCl}_{2} \text { (white ppt) }
$$

$$
\text { Q. } 9 \quad \text { (D) }
$$

Q. $10 \quad$ [7]

$\mathrm{Pbs}, \mathrm{CuS}, \mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{NiS}, \mathrm{CoS}, \mathrm{Bi}_{2} \mathrm{~S}_{3}$, are black (7) MnS : buff. colored, SnS_{2} : yellow.
Q. 11 (C,D)

Precipitate is formed on passing $\mathrm{H}_{2} \mathrm{~S}$ in acidic medium i.e. ion must be of group II.

$$
\mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Bi}^{3+}
$$

Q. 12 (D)
Q. 13 (A)

$$
\begin{aligned}
& \mathrm{KClO}_{3} \xrightarrow\left[(\text { MnO }]{\mathrm{MnO}_{2}} \mathrm{KCl}+\underset{(W)^{2}}{\mathrm{O}_{2}}\right. \\
& \underset{\text { (white) }}{\mathrm{P}_{4}}+\underset{\text { (excess) }}{\mathrm{O}_{2}} \longrightarrow \underset{(\mathrm{x})}{\mathrm{P}_{4} \mathrm{O}_{10}} \\
& \mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{HNO}_{3} \longrightarrow \underset{(\mathrm{Y})}{\mathrm{N}_{2} \mathrm{O}_{5}}+\underset{(\mathrm{Z})}{\mathrm{HPO}_{3}}
\end{aligned}
$$

Q. 14 (B)

Process involved in $\mathrm{Q} \rightarrow \mathrm{R}$ reaction is alkylation
Q. 15 (A)

Chromium (III) salt $\xrightarrow{\Delta} \mathrm{Cr}_{2} \mathrm{O}_{3}$
Borax $\xrightarrow{\Delta} \mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{NaBO}_{2}$
$2 \mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{~B}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Cr}\left(\mathrm{BO}_{2}\right)_{3}$
So correct answer is option (1)
Q. 16 (2,3,4)
$\mathrm{MnO}_{2}+2 \mathrm{KOH}+\frac{1}{2} \mathrm{O}_{2} \xrightarrow{\Delta} \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\left[(\mathrm{W})=\mathrm{K}_{2} \mathrm{MnO}_{4(\mathrm{aq})} \rightleftharpoons 2 \mathrm{~K}_{\mathrm{aq}}^{\oplus}+\mathrm{MnO}_{4(\mathrm{aq})}^{2-}\right]$
$\mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Recox }]{\text { Electlyic }} \mathrm{H}_{2}+\mathrm{KOH}+\mathrm{KMnO}_{4}$
(X)
[anion of $\mathrm{X}=\mathrm{MnO}^{-}$]
(Z)
$\left[\begin{array}{cc}\because \mathrm{MnO}_{4}^{2-} \xrightarrow[\text { Oxidation }]{\text { (Y) }} \\ \text { (Z) }\end{array}\right]$
\because In acidic solution ; Y undergoes disproportionation reaction

$$
\begin{equation*}
\left[3 \mathrm{MnO}_{4(\mathrm{aq})}^{2-}+4 \mathrm{H}^{\oplus} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right] \tag{Z}
\end{equation*}
$$

Q. 17 (A)

$$
\mathrm{X}: \mathrm{Ag} \quad \mathrm{P}: \mathrm{AgCl}
$$

$\mathrm{Y}: \mathrm{Pb}$
$\mathrm{Q}: \mathrm{PbCl}_{2}$

$\mathrm{AgCl}+2 \mathrm{NH}_{3}$ solution $\rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\right]$
(P) (excess) clear solution $\mathrm{AgCl}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $\rightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+\mathrm{NaCl}$
(P) (excess) clear solution $\mathrm{PbCl}_{2}+2 \mathrm{KI} \rightarrow \mathrm{PbI}_{2} \downarrow+2 \mathrm{KCl}$
Hot solution
(yellow ppt)
Q. 18 (C)
Q. 19 (D)
Q. 20 (A, B)

